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Abstract

A seller offers an asset in a decentralised market. Buyers have private signals about

their common value. I study whether the market becomes allocatively more efficient

with (i) more buyers, (ii) better-informed buyers. Both increase the information avail-

able about buyers’ common value, but also the adverse selection each buyer faces. With

more buyers, trade surplus eventually increases and converges to the full-information

upper bound if and only if the likelihood ratios of buyers’ signals are unbounded from

above. Otherwise, it eventually decreases and converges to the no-information lower

bound. With better information about trades buyers would have accepted, trade sur-

plus increases. With better information about trades they would have rejected, trade

surplus decreases—unless adverse selection is irrelevant. For binary signals, a sharper

characterisation emerges: stronger good news increase total surplus, but stronger bad

news eventually decrease it.
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1 Introduction

In this paper, I ask whether more information about buyers’ common value for an asset improves

or harms allocative efficiency in a decentralised market. The setting is parsimonious: the seller

sequentially visits n buyers until one accepts to trade at the seller’s commonly known reservation

value1. Negotiations are private: no buyer knows how many others the seller visited already. Trade

is efficient when buyers’ common value for the asset—its quality—is High, but not when it is Low.

Each buyer holds a private signal about the asset’s quality; conditional on quality, these signals are

IID. A buyer accepts trade when she expects it to yield positive surplus; otherwise she rejects. I ask:

1. Does the expected surplus from trade increase with more buyers, each with an additional signal?

2. Does the expected surplus from trade increase with better-informed buyers, i.e., each with a

more informative signal?

Both more and better-informed buyers increase the amount of information available in the mar-

ket about the asset’s quality. However, more information in the market—through either channel—is

a double-edged sword for allocative efficiency. On the one hand, it might push buyers to better

trades by helping them screen the asset’s quality better. On the other hand, it might push them

to worse trades by exposing them to greater adverse selection: when there are more buyers in

the market, more might have already rejected the seller; when each buyer is better-informed, each

rejection might owe to a worse signal. This paper shows that the kind of information in the market

determines how this trade-off is resolved.

My first main result, Theorem 1, answers how increasing the number of buyers in the market

influences allocative efficiency. This hinges on whether the likelihood ratios of buyers’ signals are

unbounded from above. If they are, the expected surplus from trade eventually increases in the

number of buyers and converges to the full-information benchmark: a High quality seller almost

surely trades, but a Low quality seller never does. This is the upper bound for equilibrium surplus

in the market: all gains from trade are exhausted. If they are not, the expected surplus from trade

eventually decreases in the number of buyers and converges to the no-information benchmark:

either the seller almost surely trades regardless of his quality, or the expected surplus is zero when

he trades. This is the lower bound for equilibrium surplus in the market (Proposition 3): buyers’

ability to screen the asset’s value generates no additional gains from trade.

That the outcome (whether trade occurs) in a large market reveals buyers’ common value for

the asset if and only if the likelihood ratios of their signals are unbounded from above is reminiscent

of a large sealed bid common value auction à la Wilson (1977) and Milgrom (1979). There, too,

the outcome (the winning bid) reveals the asset’s quality if and only if the bidders’ signal structure

satisfies the same condition2. However, when this condition is violated, trade in a decentralised
1In Section 7, I show that this simplifying assumption is without loss in a setting where buyers extend take-it-or-

leave-it offers to the seller, and the seller takes an offer unless he expects to secure greater surplus in later visits.
2This is when bidders’ common value for the item can assume two values. Milgrom (1979) identifies “distinguisha-
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market either becomes completely uninformative about the asset’s quality, or only reveals that

the expected gains from trade are zero. In contrast, the winning bid in a large auction may still

approximate buyers’ common value well3.

This also offers an interesting contrast with Lauermann and Wolinsky (2016). In a model like

mine4 but where the gains from trade are always positive, they find that (generically) the outcome in

a large market either fully reveals or is completely independent of the asset’s quality. Theorem 1 es-

tablishes that another possibility emerges when, ex-ante, the expected gains from trade are negative:

trade might be partially informative about the asset’s quality. However, trade only reveals the ex-

pected gains not to be negative but zero instead5—this information has no bearing on total surplus.

In Theorems 2 and 3, I answer how giving better information to each existing buyer influences

allocative efficiency. Theorem 2 shows that, when buyers’ signal structure is binary, stronger good

news (higher likelihood ratio at the top) always increases surplus; but stronger bad news (lower

likelihood ratio at the bottom) eventually decreases it. The former might prevent a seller from

trading, but recovers surplus in doing so. The latter might help a seller trade, but this eventu-

ally destroys surplus due to adverse selection. Theorem 3 generalises this insight to arbitrary finite

signal structures: additional information where a buyer would have accepted trade (a negative over-

ride) increases surplus; but additional information where she would have rejected trade (a positive

override) decreases it—unless adverse selection is irrelevant in the appropriate sense (Definition 4).

To understand the main insight, consider buyers with a binary signal structure: each buyer

receives either a good, or a bad signal. For simplicity, ignore equilibrium considerations; simply let

buyers accept upon a good signal and reject upon a bad signal. Now, consider revealing additional

information to each buyer—another binary signal. This additional information could serve two

purposes. If it is revealed after an initial good signal, it could lead the buyer to revise her initial

decision to a rejection. I call information that serves this purpose a negative override6. If it is

revealed after an initial bad signal, it could lead her to revise her initial decision to an acceptance.

I call such information a positive override. In this simple binary-on-binary example, we can inter-

pret a negative override as a strengthening of good news: a buyer can rely on two good signals to

accept. A positive override strengthens bad news: a buyer can rely on two bad signals to reject.

A negative override increases surplus. It makes it harder for the seller to trade—a seller some

buyer would have accepted before the negative override became available might now be rejected

by every buyer. But when this happens, it reveals the expected surplus from trade to be negative:

each buyer observed a bad signal and concluded that trading would reduce surplus, despite not

bility” as a condition that generalises “likelihood ratios unbounded from above” when buyers’ common value for the
item can assume any number of finite values.

3See, for instance, Section IV in Lauermann and Wolinsky (2017).
4See the Related Literature section for a more detailed discussion.
5Section 8 illustrates this with a numerical example.
6I follow the language used in credit markets: a negative (downgrade) override occurs when a human evaluator

revises a prospective borrower’s algorithmic credit score downwards, in light of overlooked information. A positive
(upgrade) override occurs when she revises it upwards. See Section 2.5 in Van Gestel and Baesens (2008); as well as
par. 110 in ECB (2024) and pg. 140 in Stellantis Financial Services Italia S.p.A. (2024).
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knowing (but suspecting) that all buyers reached the same conclusion.

In contrast, a positive override might decrease surplus. It makes it easier for the seller to

trade—a seller every buyer would have rejected might now trade with some buyer. However, due

to adverse selection, the expected surplus from such a trade might be negative: the buyer who

trades with the seller does not observe how many others rejected him previously. If too many did,

those buyers’ bad signals might reveal expected surplus from trade to be negative despite her good

signal. The buyer might find that she traded when she should not have.

I show that adverse selection severely limits positive overrides from raising surplus: unless

adverse selection is irrelevant, i.e., a buyer need not care about the number of previous refusals the

seller received, a positive override reduces total surplus.

This insight underpins Theorem 2’s sharp characterisation for binary signals. To extend it

to arbitrary signal structures in Theorem 3, I formalise a positive (and, negative) override as

a local mean preserving spread7 of a signal upon which buyers reject (and, accept). Studying

informativeness at the level of local spreads is essential to the tractability of my exercise but

sacrifices no generality: any Blackwell improvement is a combination of finitely many local spreads.

Theorems 2 and 3 show that too much information can be detrimental for allocative efficiency.

So, finally, I study how a regulator can coarsen buyers’ information to maximise expected surplus.

In Section 6, I show that through this policy tool, the regulator aims to prevent a buyer from trad-

ing unless adverse selection is irrelevant, i.e., unless she should trade even if everyone else rejected

the seller. The implication is striking: the regulator wants buyers to base their decisions on the

highest number of rejections the seller may have received, not the expected number of rejections.

Contribution

I view the main contribution of my paper to be twofold. First, I study a question that has been

largely overlooked by the literature on information aggregation in markets. Most of this literature8

asks whether the outcome in a large market reflects all information its participants have. Instead, I

ask whether a finite decentralised market can convert more information among its participants to

more efficient outcomes. I study two channels which increase information in the market. The first

is through an additional buyer, bringing an additional signal to the market. This paper is the first

to explore this channel in a decentralised market9. The second is through better-informed buyers.

To the best of my knowledge, this channel has not been explored by previous work10.

Second, my findings have important policy implications for markets where trades are negotiated
7See Definitions 2 and 3.
8Prominent and related work in this literature includes Wilson (1977), Milgrom (1979), Riordan (1993) and

Lauermann and Wolinsky (2017) for auctions (centralised markets) and Wolinsky (1990), Zhu (2012), and Lauermann
and Wolinsky (2016) for decentralised markets.

9Riordan (1993) studies how allocative efficiency in a common value auction changes with an additional bidder.
10Notably, Glode and Opp (2019) show that a decentralised OTC market provides buyers with greater information

acquisition incentives than a centralised limit-order market, so might be more efficient than the latter. I discuss their
work in light of my contribution under Related Literature.
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bilaterally and with little to no trade transparency: such as over-the-counter markets11, credit

markets12, and the housing market13. Recent technological advances have allowed participants in

these markets to enjoy increasingly greater access to information14. It is commonly presumed that

the “more efficient processing of information, for example in credit markets, financial markets, [...]

contribute to a more efficient financial system” (Financial Stability Board 2017). My Theorems 2

and 3 show that this presumption—which ignores the adverse selection problem in these markets—

is misleading: adverse selection may claw back on market participants’ ability to screen for efficient

trades, and lead to lower surplus when each can access better information. My Theorem 1 shows

that adverse selection might cause increased competition to hurt efficiency, too. This validates a

concern empirically recognised by regulators and industry leaders15.

Existing regulation in credit markets already limits the information lenders can use to assess

borrowers16. Directly resonating with Theorems 2 and 3, ECB guidelines (2024) state that “insti-

tutions should be more restrictive with positive overrides than with negative ones”. I offer a novel

justification17 for such policies, rooted in adverse selection. In Section 6, I study how a regulator

can design restrictions on market participants’ information to increase total surplus in the market.

Literature Review

The first question I ask is whether allocative efficiency in a decentralised market increases with more

buyers. Riordan (1993) asks this question in a first price auction with common values18. There, the

adverse selection problem is simply the winner’s curse—the winner understands that she had the

highest signal among all bidders. In contrast, here, a buyer who trades understands that she had

the highest signal among those buyers the seller previously visited. Consequently, the sufficient con-

dition Riordan (1993) identifies19 for surplus to be increasing or decreasing in the number of bidders

differs from the necessary and sufficient condition Theorem 1 supplies for a decentralised market.
11OTC markets are characterised by sequential contacts and little transparency (Duffie 2012; Zhu 2012). Liquidity

providers typically make ultimatum offers that last “as long as the breath is warm” (Bessembinder and Maxwell 2008).
12In the US and the UK, credit scores mask borrowers’ recent applications, and borrowers exercise little bargaining

power against lenders (Agarwal et al. 2024 and Consumer Rights 2024).
13In the housing market, “buyers and sellers must search for each other” (Han and Strange 2015). Sellers frequently

relist, making it difficult to infer how many viewings resulted in no trade: RE/MAX (2024) advises “if a property
has been sitting on the market and going stale, there is no harm in relisting it so that it appears fresh and new”.

14Hedge funds and broker-dealers use increasingly sophisticated data and algorithms to assess trades’ profitability
(Financial Stability Board 2017); lenders use cutting-edge ML technology in credit scoring (Financial Stability Board
2017); algorithmic traders in housing markets analyse and execute trades faster than traditional investors (Raymond
2024).

15Regulators (partially) blamed adverse selection for the collapse of a British bank, HBOS: “the borrowers who
came through its doors inevitably included many whom better established banks had turned away” (Kay (2024)).

16For instance, following the 2008 crash, the Basel III Accord severely limited the use of “advanced internal ratings
systems” to determine credit risk exposure. This overturned the conventions set in Basel II. See BCBS (2017).

17Currently, these policies are mostly justified by a distrust in the “robustness and prudence” of lenders’ abilities
to screen borrowers (BCBS 2017).

18Relatedly, Di Tillio, Ottaviani, and Sørensen (2021) study whether the winning bid in a first price common value
auction becomes more informative about the asset’s value when there are more bidders. Efficiency is of no direct
concern in their setting: trade is always efficient and always materialises.

19Where Fθ(s) is the CDF of the signal distribution for quality θ ∈ {L,H}, he finds that the sign of the expression
fH (.)/FH (.)
fL(.)/FL(.)

− FH (.)
FL(.)

over the support is a sufficient condition to determine this.
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My second question—whether efficiency increases when buyers are better-informed—is novel in

this literature. The closest papers, to the best of my knowledge, are Levin (2001) and Glode and Opp

(2019). Levin (2001) asks whether in a lemons market à la Akerlof (1970)—where the seller’s private

information is the root cause of inefficiency—a better-informed seller necessarily hurts efficiency.

He finds that the right kind of information can increase efficiency. His environment, and therefore

his characterisation, differs than mine. Glode and Opp (2019) show that buyers might have greater

incentives to acquire information in an OTC market than in a limit-order market; so, the former

can be more efficient than the latter. They investigate a particular information technology: buyers

invest in their probability of getting a fully revealing signal. My Theorems 2 and 3 show that in

general, a market with better-informed buyers might be less efficient due to adverse selection.

My model is closest to Zhu (2012) and Lauermann and Wolinsky (2016). Zhu (2012) assumes

that trade is efficient regardless of the asset’s quality20; otherwise his model is identical to mine.

He shows that unless the likelihood ratios of buyers’ signals are unbounded from above, a large

market might fail to be efficient—a High quality seller might fail to trade. Where trading with a

Low quality seller is inefficient, Theorem 1 offers a stronger conclusion: unless the same condition

holds, surplus in a large market converges to the no-information lower bound.

Lauermann and Wolinsky (2016), too, study a decentralised market for a common value asset;

but they focus on a large market where the seller (there, the buyer) (i) pays a small cost for each

buyer (there, seller) he visits and (ii) has bargaining power. Importantly, there is no efficiency

concern: trade is always efficient and executed. They find that generically, the transaction price

carries either full or no information about the asset’s common value. Furthermore, the seller’s

costly search further impedes the revelation of the asset’s value: the condition necessary for the

transaction price to be fully revealing is stronger than the unboundedness of likelihood ratios.

My model also admits a social learning interpretation, in the tradition of Bikhchandani, Hir-

shleifer, and Welch (1992). It can be considered as a variant of the classic model: later decision

makers (buyers) are called to decide only if those before them reject, and no one observes her

position in the queue (as in Herrera and Hörner (2013)). Most work in this literature focuses on

whether full learning attains with a large number of decision makers. Instead, my results speak to

how more information, through more or better-informed decision makers, influences the welfare of

finitely many decision makers.

The remainder is organised as follows. Section 2 presents the model. Section 3 presents pre-

liminary analyses about equilibria and total surplus in the market. Section 4 presents Theorem 1.

Section 5 presents Theorems 2 and 3 (in Subsections 5.1 and 5.2). Section 6 discusses how buyers’

information can be coarsened to maximise total surplus. Section 7 presents an extension where

buyers offer take-it-or-leave it prices to the seller. Section 8 presents a numerical example that sup-

plements the discussion in Section 4. Section 9 presents the proofs and results the main text omits.
20Both buyers’ common value and the seller’s reservation value for a Low quality asset is 0.
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2 Model

The seller (he) of an indivisible asset sequentially visits n ∈ N prospective buyers (she) in a uniformly

random order. He sells to the first one who accepts to pay his reservation value c ∈ [0, 1]. The asset’s

(seller’s) quality θ is either High or Low, θ ∈ {H,L}. When the buyer he visits rejects trade, no

transaction takes place and the seller proceeds to visit the next buyer. If the buyer accepts, she pays

the seller his reservation value and receives the asset. She enjoys a return of 1 if the asset’s quality

is High, but 0 if it is Low. The game ends when a buyer accepts the seller, or they all reject him.

At the outset of the game, the asset’s quality is unknown21; all players share the common prior

that it is High with probability ρ and Low otherwise. Each buyer obtains additional private infor-

mation about the asset’s quality through the outcome of a Blackwell experiment E = (S, pL, pH).

The outcome s of the experiment—the buyer’s signal—is drawn from the finite set S with a dis-

tribution pθ. Conditional on the asset’s quality, buyers’ signals are IID. The joint distribution of

buyers’ signals conditional on the asset’s quality is common knowledge.

The buyer visited by the seller receives no information about how many others the seller previ-

ously visited. Nonetheless, she deduces that all those buyers rejected the seller. Through this, she

extracts additional information about the asset’s quality.

The buyer forms her posterior belief about the asset’s quality using the information conveyed

by the seller’s visit and her private signal. First, she uses the information conveyed by the seller’s

visit to revise her prior belief ρ to an interim belief ψ. Then, she uses her private signal to revise

her interim belief to a posterior belief Pψ (θ = H | s).

A buyer’s strategy σ : S → [0, 1] maps every signal s ∈ S she might observe to a probability

σ(s) with which she accepts to trade. Her strategy σ is optimal against the interim belief ψ if,

given this interim belief and her signal, the buyer accepts (rejects) to trade whenever her expected

payoff from trading with the seller is positive (negative):

σ(s) =

0 Pψ (θ = H | s) < c

1 Pψ (θ = H | s) > c

She may accept to trade with any probability when she expects zero surplus from trading.

I focus on symmetric Bayesian Nash Equilibria of this game. Hereafter, I reserve the term

equilibrium for such equilibria unless I state otherwise. An equilibrium is a strategy and interim

belief pair (σ∗, ψ∗) such that:

1. The interim belief ψ∗ is consistent with the strategy σ∗; i.e., it is the interim belief of a buyer

who believes all other buyers use the strategy σ∗.

2. The strategy σ∗ is optimal given the interim belief ψ∗.

I call any strategy σ∗ that constitutes part of an equilibrium an equilibrium strategy.
21Until Section 7, the seller’s knowledge about the asset’s quality is immaterial.
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3 Buyers’ Beliefs, Equilibria, and Total Surplus

This section lays the necessary groundwork to discuss my main results. First, I discuss how buyers

form their interim beliefs, and the fundamental properties of the set of equilibria. Then, I discuss

how the total surplus from trade varies across different equilibria.

3.1 Buyers’ Beliefs and Equilibria

No buyer learns how many others the seller visited before her. But, she deduces that all those past

visits resulted in rejections. How does she interpret this information?

When each buyer uses a strategy σ, a seller of quality θ faces a probability rθ(σ; E) of getting

rejected in any of his visits:

rθ(σ; E) := 1−
m∑
j=1

pθ (sj)× σ (sj)

Every buyer understands that the seller is equally likely to decide to visit any number k ∈

{0, 1, 2, ..., n− 1} of other buyers before her. She will receive the seller’s visit if and only if he

is rejected by all those k buyers. Therefore, she assigns a probability νθ (σ; E) to being visited by

the seller:

νθ (σ; E) :=
1

n
×
n−1∑
k=0

rθ (σ; E)k

When the seller does visit her, the buyer uses this information to update her prior belief about the

seller’s quality to an interim belief ψ:

ψ = P (θ = H | visit received) =
P (visit received | θ = H)× P(θ = H)

P (visit received)

=
ρ× νH (σ; E)

ρ× νH (σ; E) + (1− ρ)× νL (σ; E)

This is the unique interim belief that is consistent with every buyer using the strategy σ. The

buyer then uses her private signal s ∈ S about the seller’s quality to update her interim belief to a

posterior belief:

Pψ (θ = H | s) = ψ × pH(s)

ψ × pH(s) + (1− ψ)× pL(s)

Note that the informational content of the buyer’s signal s ∈ S is distilled by the ratio pH(s)
pH(s)+pL(s)

.

For notational convenience, I will use the signal’s label, s, to refer to this ratio:

s :=
pH(s)

pH(s) + pL(s)
∈ [0, 1] for all s ∈ S

Under this notation, the ratio s
1−s simply equals the signal’s likelihood ratio, pH(s)

pL(s)
. For further con-

venience, I also enumerate the signals S in order of increasing likelihood ratios; S := {s1, s2, ..., sm}

where s1 ≤ s2 ≤ ... ≤ sm. Note that, for the same interim belief, a buyer’s posterior belief is
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increasing in her signal’s index.

Whenever a strategy σ∗ is optimal against the unique interim belief ψ∗ consistent with it, the pair

(σ∗, ψ∗) forms an equilibrium. In principle, there might be many such pairs, or none at all. Propo-

sition 1 sets the ground by ruling the latter possibility out and characterising the set of equilibria.

Proposition 1. Let Σ be the set of equilibrium strategies. Then:

1. Σ is non-empty and compact.

2. Any equilibrium strategy σ∗ is monotone: for any σ∗ ∈ Σ, σ∗(s) > 0 for some s ∈ S implies

that σ∗(s′) = 1 for every s′ ∈ S′ such that s′ > s.

3. All equilibria exhibit adverse selection: ψ∗ ≤ ρ for any interim belief ψ∗ consistent with an

equilibrium strategy σ∗ ∈ Σ.

Proof outline: To establish the existence of an equilibrium, I construct a best response correspon-

dence: Φ for buyers. Φ maps any strategy σ to the set of strategies that are optimal against the

unique interim belief consistent with σ; i.e. those that maximise a buyer’s expected payoff when

her all her peers use the strategy σ. Note that σ∗ is an equilibrium strategy if and only if it is a

fixed point of this best response correspondence; i.e., σ∗ ∈ Φ(σ∗). Through a routine application

of Kakutani’s Fixed Point Theorem, I show that Φ indeed has a fixed point. In the process, I

prove that Φ is upper semicontinuous; this also establishes that the set of equilibrium strategies is

compact.

Monotonicity is a straightforward necessity for a strategy to be optimal: higher signals induce

higher posterior beliefs, so buyers (weakly) prefer to trade upon higher signals. A crucial conse-

quence of monotonicity is that a Low quality seller is likelier to be rejected in any of his visits, as

buyers are likelier to observe lower signals for him. Thus, the seller is adversely selected through

his past rejections, and buyers’ interim beliefs always lie below their prior beliefs.

An equilibrium is guaranteed to exist, but it need not be unique. The following example, which

I will modify and revisit on occasion, illustrates this. Let there be two buyers who share the prior

belief ρ = 0.5, and the seller’s reservation value be c = 0.2. Furthermore, let buyers’ experiment E

be binary, S = {0.2, 0.8}, and its outcome have the conditional distribution:

pL(s) =

0.8 s = 0.2

0.2 s = 0.8
pH(s) =

0.2 s = 0.2

0.8 s = 0.8

There are two equilibrium strategies in this example22, which I denote as σ̂ and σ̌. Table 1

summarises these strategies, and how buyers form their interim and posterior beliefs under them.
22There are no other equilibria. Under any monotone strategy that assigns a positive probability to trade, buyers’

interim belief lies between 0.5 and 0.4—so buyers must always trade upon the high signal 0.8. Lemma 17 in Section
9.3 shows that in equilibrium, buyers either always or never trade upon the low signal.
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σ̌ σ̂

Prob. the buyer accepts upon s = 0.8 σ̌(0.8) = 1 σ̂(0.8) = 1

Prob. the buyer accepts upon s = 0.2 σ̌(0.2) = 1 σ̂(0.2) = 0

Buyers’ interim belief ψ = 0.5 ψ = 0.4 23

Buyers’ posterior belief upon s = 0.8 0.8 0.7

Buyers’ posterior belief upon s = 0.2 0.2 ≈ 0.14

Table 1: Running Example: Comparing Equilibrium Strategies σ̌ and σ̂

Under the strategy σ̌, a buyer accepts trade regardless of her signal. This eliminates adverse

selection: since the first buyer the seller visits accepts trade, whoever he visits is certain that she

is the first one he visited; and so, buyers’ interim belief ψ equals their prior ρ. In this equilibrium,

a buyer finds trade optimal even if she receives the low signal 0.2; given the posterior belief this

signal induces, she expects zero net surplus from trade.

Under the strategy σ̂, a buyer accepts trade if only if she receives the high signal 0.8. Buyers’

selectivity triggers adverse selection: each buyer understands that she need not be the first one the

seller visited. So, buyers’ interim belief ψ falls below their prior belief. A buyer no longer finds

trade optimal when she receives the low signal 0.2: this signal induces a posterior belief ≈ 0.14, so

she expects a loss. She does, however, find it optimal when she receives high signal s = 0.8: this

signal induces a posterior belief of 0.7, so she expects positive net surplus from trade.

In the equilibrium where buyers use the strategy σ̂, the seller is likelier to be rejected in any

of his visits. The buyers are more selective—they are (weakly) likelier to reject trade at any signal

they might observe.

Definition 1. Where σ′ and σ are two strategies, σ′ is more selective than σ (or, σ is less selective

than σ′) if σ′(s) ≤ σ(s) for all s ∈ S.

Selectivity offers a natural way to order buyers’ equilibrium strategies. Proposition 2 shows

that it is also a complete order over them.

Proposition 2. Selectivity is a complete order over the set of equilibrium strategies Σ. Moreover,

Σ contains a most and least selective strategy, σ̂ ∈ Σ and σ̌ ∈ Σ respectively:

σ̂(s) ≤ σ∗(s) ≤ σ̌(s) for all s ∈ S and σ∗ ∈ Σ

Proof. By Proposition 1, the set of equilibrium strategies Σ is a subset of the set of monotone

strategies. The latter is a chain under the selectivity order: for any signal s ∈ S and two monotone
23The interim belief in this case is easily calculated as: ψ = 1+rH (σ;E)

(1+rH (σ;E))+(1+rL(σ;E))
= 1.2

1.2+1.8
= 0.4.
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strategies σ and σ′, we have:

σ′(s) > σ(s) =⇒
1 = σ′(s·) ≥ σ(s·) for any s· > s ∈ S

σ′(s·) ≥ σ(s·) = 0 for any s· < s ∈ S

Since any subset of a chain is also a chain, Σ is a chain too.

By Proposition 1, Σ is a compact set. Since it is also a chain, by applying a suitably general

Extreme Value Theorem (see Theorem 27.4 in Munkres (2000)) to the identity mapping on Σ, one

verifies that Σ has a minimum and maximum element with respect to this order; i.e. there are two

strategies σ̂, σ̌ ∈ Σ such that for any other strategy σ∗ ∈ Σ we have σ̂(s) ≤ σ∗(s) ≤ σ̌(s) for all

s ∈ S.

I call an equilibrium “more selective than another” whenever buyers use a more selective strategy

in the former.

3.2 Total Surplus

Trading generates a surplus of 1 − c when the asset’s quality is High, but destroys a surplus of c

when the asset’s quality is Low. So, the expected surplus from trade in the market—total surplus,

for short—depends on how well buyers can screen the asset’s quality before they decide whether to

trade. Given buyers’ experiment E and strategy σ, total surplus equals:

Π(σ; E) := (1− c)× Pσ;E (θ = H ∩ some buyer trades)− c× Pσ;E (θ = L ∩ some buyer trades)

= (1− c)× ρ× [1− rH(σ; E)n]− c× (1− ρ)× [1− rL(σ; E)n]

Buyers fully appropriate this surplus—the seller is only paid his reservation value when he trades.

Two benchmarks are natural to consider. If buyers had full information about the asset’s quality,

they would trade whenever the asset’s quality is High, but never when it is Low; all gains from trade

would be realised. Total surplus in this full-information benchmark would equal Πf := ρ× (1− c).

If instead, buyers had no information about the asset’s quality, their decisions would be guided

solely by their prior belief. There would be no adverse selection: previous rejections would convey

no private information since no buyer has any. A buyer would trade if, given her prior belief, she

expected positive surplus from doing so, and reject otherwise. Total surplus in this no-information

benchmark would equal Πn := max {0, ρ− c}.

Proposition 3 establishes that, in equilibrium, total surplus is bounded by these benchmarks;

moreover, total surplus is always higher in more selective equilibria.

Proposition 3. Equilibrium total surplus is bounded above by the full-information benchmark Πf

and below by the no-information benchmark Π∅. Furthermore, it is higher under more selective

equilibrium strategies:
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max {0, ρ− c} = Π∅ ≤ Π(σ∗∗; E) ≤ Π(σ∗; E) ≤ Πf = ρ× (1− c)

where σ∗ and σ∗∗ are two equilibrium strategies such that σ∗∗ is more selective than σ∗.

Proof. The second part of the Proposition follows as a corollary to Lemma 11 in Section 9.2, where

I prove that total surplus decreases whenever buyers jointly deviate from an equilibrium strategy

to a less selective monotone strategy.

For the first part of Proposition 3, note that all gains from trade is realised when buyers have

full information; hence Πf bounds total surplus from above. Since total surplus equals buyers’

surplus from trade, it is bounded below by 0 in any equilibrium—a buyer can always reject. Thus,

when ρ ≤ c, Π∅ = 0 bounds total surplus from below. Now let ρ > c, and assume for contradiction

that there is an equilibrium strategy σ∗ such that Π(σ∗; E) < Π∅. Then:

Pσ∗;E (some buyer trades)× [Pσ∗;E (θ = H | some buyer trades)− c] <

Pσ∗;E (some buyer trades)× [Pσ∗;E (θ = H | some buyer trades)− c] +

Pσ∗;E (no buyer trades)× [Pσ∗;E (θ = H | no buyer trades)− c] = Π∅

So, Pσ∗;E (θ = H | no buyer trades) > c. However, σ∗ then cannot be an equilibrium strategy; each

buyer has a profitable deviation to trade with the seller whenever he visits.

Buyers’ private information helps them raise surplus by avoiding trade when the asset’s quality

is Low, and executing it when it is High. Equilibrium multiplicity presents a trade-off: in a more

selective equilibrium, trade is less likely—this conserves surplus when the asset’s quality is Low. In

a less selective equilibrium, trade is more likely—this raises surplus when the asset’s quality is High.

Proposition 3 establishes that this trade-off is always resolved in favour of more selective equilibria.

The intuition is illustrated by our running example. There, we identified two equilibrium strate-

gies, σ̂ and σ̌. These are the only equilibrium strategies; so, σ̂ is the most selective equilibrium

strategy in that example, and σ̌ is the least selective. Table 2 summarises how the probability that

the seller trades and the total surplus vary across these equilibria, and compares them to the full-

and no-information benchmarks.

no-info. σ̌ σ̂ full-info.

Prob. seller trades when θ = H 1 1 0.96 24 1

Prob. seller trades when θ = L 1 1 0.36 0

Total surplus 0.3 0.3 0.348 0.4

Table 2: Running Example: Comparing Surplus Across Equilibria

24This is the probability that at least one buyer will receive the high signal 0.8 when the seller has High quality:
1− p2H(0.2) = 0.96. For a seller of Low quality, this probability is: 1− p2L(0.2) = 0.36.
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Unless both buyers observe the low signal 0.2, the seller trades under both equilibria. If both

observe the low signal, both buyers reject the seller in the most selective equilibrium: each fear

that the other buyer might have already rejected him, which would indicate that that buyer also

observed a low signal. The fact that neither buyer wants to trade in the event that both observe a

low signal reveals that the expected surplus from trading with such a seller is negative. Nonetheless,

this seller trades in the least selective equilibrium: now, each buyer understands that the seller visits

her only if he has not visited the other yet, so she becomes more optimistic about the other buyer’s

signal. This results in lower total surplus.

4 Efficiency with More Buyers

In this section, I discuss how total surplus changes as the number of buyers in the market increases.

Theorem 1. Let Πn (σ̂; E) be total surplus under the most selective equilibrium in a market with

n buyers. If E has an outcome that fully reveals High quality (sm = 1), the sequence {Πn (σ̂; E)}∞n=1

is eventually increasing and converges to surplus in the full-information benchmark. Otherwise, it

is eventually decreasing and converges to surplus in the no-information benchmark.

Each additional buyer brings an additional signal about the asset’s quality to the market. As the

market becomes arbitrarily large, buyers’ collective information becomes sufficient to fully reveal

the asset’s quality—unless buyers’ signals carry no information. Whether the market outcome in-

corporates this information and reaches full allocative efficiency depends on the kind of information

each buyer has.

If buyers have a signal which fully reveals High quality, total surplus reaches its full-information

upper bound as the number of buyers grows arbitrarily large. Beyond a threshold number of

buyers, adverse selection forces each buyer to reject the seller unless she observes that fully-revealing

high signal. Therefore, a Low quality seller never trades. A High quality seller, however, might.

Moreover, a High quality seller is likelier to trade in a larger market, as it is likelier that at least

one buyer will observe the fully-revealing high signal.

If, however, buyers do not have such a signal, the market experiences a surplus breakdown as the

number of buyers grows large—total surplus reaches its no-information lower bound. How market

outcomes evolve as the number of buyers grows depends on whether the expected gains from trade

are positive, ρ > c, or weakly negative, ρ ≤ c:

• When the expected gains from trade are positive, no matter how large the market, a buyer

who observes the highest possible signal trades when the seller visits. The larger the market,

the likelier that some buyer will observe this signal—regardless of the seller’s quality. Beyond

a threshold number of buyers, this hurts total surplus through the increased probability that

a Low quality seller trades. As the number of buyers grows arbitrarily large, the seller almost

surely trades. This yields the level of surplus in the no-information benchmark, ρ− c.
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• When the expected gains from trade are negative, a buyer accepts the seller with an arbitrarily

small probability in a large market, if at all. Adverse selection, however, ensures that she

expects zero surplus from doing so. The seller may trade with positive probability, but total

surplus is equal to that in the no-information benchmark: 0.

Notably, even when buyers have a signal that fully reveals High quality, total surplus need not

converge to the full-information benchmark in every equilibrium. To see this, consider a slightly

modified version of our running example. As before, the common prior is ρ = 0.5, and the seller’s

reservation value is c = 0.2. But we modify buyers’ experiment; they now observe the outcome of

Eg =
(
Sg, pgL, p

g
H

)
:

pgL(s) =

1 s = 0.2

0 s = 1
pgH(s) =

0.25 s = 0.2

0.75 s = 1

The signal s = 1 fully reveals High quality. However, buyers trade regardless of the signal they

receive in the least selective equilibrium—irrespective of the number of buyers in the market.

Thus, the seller always trades. Total surplus always equals that in the no-information benchmark,

Π∅ = 0.3. On the other hand, buyers only trade upon the high signal s = 1 in the most selective

equilibrium. Hence, a Low quality seller never trades. A High quality seller trades with probability

1− (0.25)n in a market with n buyers. In an arbitrarily large market, he trades almost surely; total

surplus converges to the full-information benchmark, Πf = 0.5× [1− 0.2].

Theorem 1 helps compare a decentralised market with a first price auction where the seller

simultaneously solicits buyers’ bids and sells to the highest bidder. There too, total surplus may

decrease with an additional bidder (Riordan (1993)), due to an increased probability of trade when

it is inefficient. Similar to a decentralised market, adverse selection is the culprit: the winner’s

curse is more severe in an auction with more bidders. However, adverse selection in a decentralised

market differs from the winner’s curse in an auction: a buyer who trades in a decentralised market

understands that her signal was the highest among the previous buyers to be visited; a bidder who

wins in an auction understands that her signal was the highest among all bidders. Thus, Riordan

(1993)’s sufficient condition for an additional participant to decrease total surplus differs from the

necessary and sufficient condition Theorem 1 recovers for total surplus to eventually increase with

the number of buyers in a decentralised market.

This condition is also necessary and sufficient for buyers’ common value to be revealed through

trade in a decentralised market. Strikingly, the same condition is also necessary and sufficient for

a first price common value auction to reveal bidders’ common value through the winning bid25.

However, when this condition is violated, a common value auction with an arbitrarily large number
25See Wilson (1977) and Milgrom (1979) for this classic result: in a setting where the item’s common value may

take countably many values, Milgrom (1979) recovers “distinguishability” as a necessary and sufficient condition.
When the item’s value is binary, “distinguishability” corresponds to an unbounded likelihood ratio from above.
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of bidders may nonetheless aggregate information “well”26. This is not the case in a decentralised

market with an arbitrarily large number of buyers. Instead, three possibilities emerge:

1. The expected gains from trade are positive, ρ > c, and the seller almost surely trades. The

fact that she trades is completely uninformative about the asset’s quality.

2. The expected gains from trade are negative, ρ < c, and the seller never trades27. The fact

that she does not trade is completely uninformative about the asset’s quality.

3. The expected gains from trade are negative, ρ < c, and if a buyer trades, she expects zero

surplus from doing so. Trade—when it happens—reveals that the asset has High quality with

probability c, i.e., that the expected surplus from trade is zero28.

So, whenever the likelihood ratio of buyers’ signals is not unbounded at the top, trade is at most

partially informative about the asset’s quality, unlike in an auction. The information it reveals has

no bearing on market participants’ surplus: at most, trade is revealed to be to be no worse than

no trade in expectation.

This offers an interesting contrast with Lauermann and Wolinsky 2016, too29. They assume

that trade is always efficient, and find that (generically) the outcome in a large market either fully

reveals or is completely uninformative about buyers’ common value for the asset. Theorem 1 echoes

their finding where the expected gains from trade are positive, ρ ≥ c. However, it also shows that

another possibility arises when the expected gains from trade are negative, ρ < c: trade in a large

market may be partially informative about the asset’s quality.

5 Efficiency with Better-Informed Buyers

In this section, I discuss how giving each buyer better information—a Blackwell more informative

experiment—affects total surplus. Throughout, I take the number of buyers n to be a primitive

rather than a parameter. Equilibrium surplus attains its extremes in the most and least selective

equilibria. My main results describe the comparative statics of total surplus under both of these

equilibria. For brevity, I write equilibrium⋆ wherever the reader may read the most or least selective

equilibrium. I denote the equilibrium⋆ strategy under an experiment E as σ⋆E .

If there were a single buyer in the market—exposed to no adverse selection—a Blackwell im-

provement of her experiment would be necessary and sufficient for total surplus to rise regardless

of the seller’s reservation value30. The reason is simple: better information improves her ability to
26See, for instance, Section IV in Lauermann and Wolinsky (2017).
27For instance, if buyers’ experiment is uninformative about the asset’s value.
28Section 8 illustrates this scenario with a numerical example.
29Lauermann and Wolinsky (2017) find a similar result in a first price auction where the number of bidders varies

with the common value of the auctioned item.
30In general, a Blackwell improvement is sufficient, but not necessary for a decision maker to extract higher value

from a decision problem (see Blackwell (1953)). However, it is necessary for the decision maker to extract higher
value from any decision problem where the unknown state is binary—such our buyers’ screening problem. I present
a self contained proof of this fact in Section 9.2, Lemma 12 for completeness.
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screen the asset’s quality and target efficient trades.

In a market with multiple buyers, buyers’ ability to screen the seller is shaped both by the

quality of their private signals and the extent of adverse selection each face in the market. So,

better information becomes a double-edged sword. On the one hand, it allows each buyer to screen

the seller more effectively. On the other hand, it might exacerbate adverse selection: previous

rejections might become likelier, and each might carry worse news about the quality of the asset.

This latter channel pushes the buyer to worse trades. If it overwhelms buyers’ increased ability

to screen the asset’s quality, it might lead to lower total surplus. How this trade-off is resolved is

determined by the kind of improvement in buyers’ information.

5.1 Binary Experiments

I start by restricting buyers to binary signals. In this setting, I obtain a sharper characterisation

and uncover the main insights which drive my result for general signal structures, in Theorem 3.

A binary experiment E has two possible outcomes s1, s2 ∈ S, which I relabel as sL, sH ∈ S for

convenience31. The low outcome sL ∈ [0, 0.5] decreases a buyer’s interim belief about the quality

of the asset, while a high outcome sH ∈ [0.5, 1] increases it.

Ranking two binary experiments E ′ and E in their (Blackwell) informativeness is a simple

exercise. Where the former has the possible outcomes s′L, s
′
H ∈ S′, the experiment E ′ is Blackwell

more informative than E if and only if32:

• it has a lower likelihood ratio at the bottom, s′L ≤ sL; i.e., delivers stronger bad news, and

• it has a greater likelihood ratio at the top, s′H ≥ sH ; i.e. delivers stronger good news.

I illustrate these two improvements in information in Figures 5.2a and 5.2c.

Theorem 2 (illustrated in Figure 5.1) answers how total surplus evolves when buyers’ binary

experiment becomes Blackwell more informative.

Theorem 2. Let buyers’ experiment E be binary. Then, equilibrium⋆ total surplus is increasing

in the strength of good news (sH) but is quasiconcave and eventually decreasing in the strength of

bad news (sL).

To understand the intuition behind Theorem 2, let us start from the case of stronger good

news. Instead of the experiment E , buyers now observe the outcome of E ′ = (S′, p′L, p
′
H), which

delivers stronger good news than E , s′H > sH , but the same strength of bad news as E , sL = s′L.

Brushing equilibrium considerations aside, simply assume that, under both experiments, a buyer

accepts upon the high signal, sH or s′H , and rejects upon the low signal, sL or s′L. How does, then,

this improvement in buyers’ information affect the seller’s chances of trading?
31Recall from Section 3 that, to ease notation, I use labelling convention s := pH (s)

pH (s)+pL(s)
.

32See Section 12.5 in Blackwell and Girshick (1954) for a textbook exposition of this classic result.

16



sL

Π(σ⋆E ; E)

Stronger Bad News: sL ↓

sH

Π(σ⋆E ; E)

0.5 10 0.5

Stronger Good News: sH ↑

Figure 5.1: Theorem 2 illustrated

The answer is clearest when we reinterpret the additional information a buyer can extract from

E ′ as an additional signal she might observe. Instead of replacing the original experiment E with E ′,

imagine that a buyer who observes an initial high signal sH from the experiment E then observes

the outcome of an additional binary experiment Ea = ({saL, saH}, paL, paH). Conditional on the asset’s

quality, the outcomes of these additional signals are IID across buyers, and independent of the first

signal they observe. Their conditional distributions are such that when appended to E as such, the

experiment Ea mimics the improvement in information that E ′ offers:

sH
1− sH

×
paH (saH)

paL
(
saH

) =
s′H

1− s′H

sH
1− sH

×
paH (saL)

paL
(
saL

) =
s′L

1− s′L

A buyer who observes the initial low signal sL receives no further information. I illustrate this

construction in Figure 5.2b.

So, observing the sequence (sH , saH) conveys the same information as the signal s′H from E ′ does.

This information leads to an acceptance. Either the sequence (sH , s
a
L) or the signal sL convey the

same information as the signal s′L from E ′ does. This information leads to a rejection.

Our reinterpretation reveals how this additional information affects trade. A buyer who observes

an initial low signal sL receives no additional information. She rejects the seller, as before. However,

a buyer who receives an initial high signal sH receives additional information through Ea. Absent

this additional information, she would have traded. But a low signal saL from Ea “negatively

overrides” that initial verdict: now, she rejects the seller.

Thus, stronger good news jeopardises trade: a seller who previously would have traded with

some buyer may now be rejected by every buyer. This raises total surplus: the seller is rejected by

every buyer because each observe a low signal, either sL or saL. Trading with such a seller would

yield negative surplus in expectation: if a buyer with a low signal expects a negative surplus from

trade when she merely suspects others to have received low signals, she would certainly expect a

negative surplus if she knew all others had received low signals too.
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saL

(d) Stronger Bad News with Add. Signal

Figure 5.2: Blackwell Improvements of a Binary Signal

Now, let us turn to the case of stronger bad news. To shed light on the threshold beyond which

stronger bad news hurts total surplus, let us focus on a an experiment E ′ that delivers “marginally”

stronger bad news than E , i.e., s′L = sL − δ for a vanishingly small δ > 0, but the same strength of

good news as E , s′H = sH .

As before, let us reinterpret the additional information a buyer can extract from E ′ as an

additional signal she can observe. This time, she observes this additional signal only after an initial

low signal sL. As before, the conditional distribution of this additional signal is such that when

appended to E , it mimics the improvement E ′ offers over E :

sL
1− sL

×
paH (saH)

paL
(
saH

) =
sH

1− sH

sL
1− sL

×
paH (saL)

paL
(
saL

) =
s′L

1− s′L
=

sL − δ

1− (sL − δ)

I illustrate this construction in Figure 5.2d.

A buyer who receives an initial high signal sH observes no additional information. She trades

with the seller. However, a buyer who receives an initial low signal sL receives additional information

through Ea. Absent this additional information, she would have rejected the seller. But a high

signal saH from Ea “positively overrides” her initial verdict: now, she trades.
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So, stronger bad news encourages trade: a seller who previously would have been rejected by

every buyer might now trade with one. The effect this has on total surplus is less clear. What can

we infer about the quality of this seller?

The seller who would have been rejected by every buyer absent the additional information Ea

supplies; so, initially all buyers observed low signals, sL. Upon the additional information conveyed

by Ea, some buyer revises her decision to an acceptance; so, at least one buyer must have observed

a high signal saH from this additional experiment, but the rest must have observed the low signal

saL. However, the rest observed the low signal saL from this additional experiment. Whether the

expected surplus from trade is positive depends on how many did so:

P (θ = H |≥ 1 buyer observed saH) =
n∑
k=1

 P (θ = H | k buyers observed saH)

×P (k buyers observed saH |≥ 1 buyer obs. saH)


However, we may deduce that almost surely only one buyer observed the high signal saH . To

see this, observe the likelihood ratios of the signals a buyer may observe from the experiment Ea:

saL
1− saL

=

sL−δ
1−(sL−δ)

sL
1−sL

saH
1− saH

=

sH
1−sH
sL

1−sL

While the likelihood ratio for the high signal saH is constant, that for the low signal saL converges to

1 as δ ↓ 0 and the improvement in buyers’ information becomes “smaller”. Due to the martingale

property of likelihood ratios, these likelihood ratios must average to 1; so, the probability that

buyers will observe the additional high signal saH must vanish as δ ↓ 0.

So, the expected surplus from this trade is non-negative if and only if:

lim
δ↓0

P (θ = H |≥ 1 buyer observed saH)− c = P (θ = H | 1 buyer observed saH)− c ≥ 0

⇐⇒ ρ

1− ρ
×
ï

sL
1− sL

òn−1

× sH
1− sH

≥ c

1− c

Marginally stronger bad news allows the most adversely selected seller to trade. Had buyers’

not received additional information, he would not have traded. Because they do, one buyer accepts

him. The RHS of the expression above reflects this: the expected surplus from trading with this

seller is positive if and only if the high signal saH observed by that one buyer overpowers the low

signals saL observed by the remaining n− 1 buyers33.

This is a stark condition; when it holds, we may say that adverse selection is irrelevant : a buyer

who observes the high signal need not be concerned about any previous rejections the seller may

have received. It is also closely linked to the threshold Theorem 2 identifies, which Proposition 4

characterises.

33Note that saL → sL as δ ↓ 0.
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Proposition 4. Let buyers’ experiment be binary. Then, equilibrium⋆ total surplus weakly de-

creases with stronger bad news (lower sL) when:

ρ

1− ρ
×max

®
sL

1− sL
,

ï
sL

1− sL

òn−1

× sH
1− sH

´
≤ c

1− c

This condition is also necessary in the least selective equilibrium.

Corollary 5. Where buyers’ experiment is binary and ρ ≤ c, equilibrium⋆ total surplus weakly

decreases with stronger bad news (lower sL) when
Ä

sL
1−sL

än−1
× sH

1−sH ≤ c
1−c .

Proposition 4 reveals that total surplus falls with stronger bad news once bad news is strong enough

to:

• violate the condition we informally identified as the “irrelevance of adverse selection”, and

• for buyers to reject the seller with positive probability in their equilibrium⋆ strategies.

Under some parameter constellations, even when adverse selection is no longer irrelevant, bad news

might need to get stronger before, in equilibrium, buyers start rejecting the seller upon a low sig-

nal. Before the strength of bad news hits this critical mark, total surplus equals the no-information

benchmark. Once it does, total surplus experiences a one time upward jump. Thereafter, stronger

bad news decreases total surplus. Corollary 5 reveals, however, that this is not a concern when

ρ < c: then, buyers always reject upon a low signal, so stronger bad news decreases total surplus

whenever the condition we dubbed “the irrelevance of adverse selection” is satisfied.

5.2 Finite Experiments

Here, I show how the ideas we through Theorem 2 generalise to Blackwell improvements of exper-

iments with an arbitrary finite number of outcomes. We cannot deploy those ideas immediately:

first, for non-binary experiments, the ideas of stronger good and bad news lose meaning; second,

Blackwell improvements of such experiments are complex—they cannot be described by simple

changes in signals’ likelihood ratios. Nonetheless, the core idea behind Theorem 2 supplies the

answer: whether total surplus improves depends on whether an improvement is a positive over-

ride—information about a seller who would be rejected—or a negative override—information about

a seller who would be approved.

Before I state Theorem 3, I establish two definitions that will provide useful langugage: Defi-

nition 2 formalises the notion of a positive and negative override, and Definition 4 formalises the

notion of the “irrelevance of adverse selection”.

Definition 2. Enumerate the joint outcome set of the experiments E = (S, pL, pH) and E ′ =

(S′, p′L, p
′
H) as S∪S′ = {s1, s2, ..., sM}. The experiment E ′ differs from E by a local mean preserving
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spread (or, local spread) at sj ∈ S if:

p′θ(sj) = 0 pθ(sj+1) = pθ(sj−1) = 0 p′θ(sj+1) + p′θ(sj−1) = pθ(sj)

and p′θ(s) = pθ(s) for any s ∈ S′ ∪ S \ {sj−1, sj , sj+1}.

A local spread moves all the probability mass experiment E places on some signal sj to two

new signals—one better news about the asset’s quality, sj+1, one worse, sj−1. In this sense, we can

think of it as providing additional information to a buyer who observes the original signal sj ∈ S.

Every local spread is an ordinary mean preserving spread34. The converse is not true; local

spreads must move all the probability mass on a signal, and they must move it to its neighbouring

signals: the mass on sj is spread to sj+1 and sj−1. I visualise the construction of a local spread in

Figure 5.3 35.

Restricting to local spreads is without loss for finite experiments36—every Blackwell improve-

ment, and a fortiori, ordinary mean preserving spread can be constructed through a finite number

of local spreads.

Remark 1. [Müller and Stoyan (2002), Theorem 1.5.29] An experiment E ′ is Blackwell more

informative than another, E , if and only if there is a finite sequence of experiments E1, E2, ..., Ek
such that E1 = E , Ek = E ′, and Ei+1 differs from Ei by a local spread.

P ψ
=
0
.5
(θ

=
H

|s
)

s1

s5

s3

ψ = 0.5

(a) Before local spread

s1

s5

[si] s3

[si+1] s4

[si−1] s2

ψ = 0.5

(b) After local spread

Figure 5.3: A Local Mean Preserving Spread

34Specifically, a “3-part MPS”, in the language of Rasmusen and Petrakis (1992). Mean preserving spreads are
originally due to Muirhead (1900) and were popularised in economics by Rothschild and Stiglitz (1970).

35For clarity, I fix ψ = 0.5 in this illustration.
36However, local mean preserving spreads are only defined for finite experiments; see Müller and Scarsini (2001)

and Müller and Stoyan (2002).
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Definition 3. Let experiment E ′ differ from E by a local spread at sj and σ⋆E denote the equilibrium⋆

strategy under experiment E . This local spread is a negative override under equilibrium⋆ if σ⋆E(sj) =

1, and a positive override if σ⋆E(sj) = 0.

Both positive and negative overrides are local spreads of a buyer’s experiment, but they differ

in which seller they inform the buyer about. A negative override is a local spread of a signal upon

which a seller would have traded with the buyer. A positive override is a local spread of a signal

upon which the seller would have been rejected by the buyer.

Definition 4. Let σ be a monotone strategy for a fixed experiment E . Adverse selection is σ-

irrelevant for signal s ∈ S if:

ρ

1− ρ
×
ï
rH (σ; E)
rL (σ; E)

òn−1

× s

1− s
≥ c

1− c

When adverse selection is σ-irrelevant for a signal s ∈ S, a buyer finds it optimal to trade

upon the signal s ∈ S even if all other buyers rejected the seller—provided those buyers used the

strategies σ.

Theorem 3. Let the experiment E ′ differ from E by a local spread at sj ∈ S. Equilibrium⋆ total

surplus is:

1. weakly greater under E ′ if the local spread is a negative override under equilibrium⋆.

2. weakly less under E ′ if the local spread is a positive override under equilibrium⋆, unless adverse

selection is σ⋆E -irrelevant for signal sj+1.

Theorem 3 shows that the effect of a local spread on total surplus depends on the kind of the

spread. Negative overrides always increase total surplus. Positive overrides decrease it—unless

adverse selection is irrelevant for a buyer who receives the override.

To prove Theorem 3, I show that a negative override indeed pushes buyers to reject the seller

more often in the new equilibrium⋆. This always increases total surplus. A positive override pushes

buyers to trade more often with him. This decreases total surplus unless adverse selection is σ⋆E -

irrelevant for signal sj+1—the new signal upon which the buyer may approve the seller.

This exercise is complicated by the fact that identifying how buyers’ interim beliefs change when

their experiment changes is infeasible beyond the simplest cases. Studying “local”, not ordinary,

mean preserving spreads is crucial for tractability; this allows me to identify how equilibria respond

to improvements in information without needing to pinpoint changes in interim beliefs.

Unlike Theorem 2, an analyst who wishes to use Theorem 3 to identify the effect of an improve-

ment on total surplus needs knowledge of buyers’ equilibrium⋆ strategies. In practice, the analyst

might want to remain agnostic about equilibrium⋆ strategies. To alleviate this concern, Proposition

6 offers a sufficient condition for a positive override to decrease total surplus in the most selective

equilibrium.

22



Proposition 6. Let the experiment E ′ differ from E by a local spread at sj . Total surplus in the

most selective equilibrium is lower under E ′ if the following conditions hold:

ρ

1− ρ
×
Å

sj
1− sj

ã
≤ c

1− c
and

ρ

1− ρ
×
Å

sj
1− sj

ãn−1

× sj+1

1− sj+1
≤ c

1− c

The sufficient conditions in Proposition 6 strengthen the necessary and sufficient conditions

supplied by Theorem 3. The condition on the left ensures that the local spread is a negative

override: a buyer rejects the seller upon sj in any equilibrium since interim beliefs always lie below

the prior belief, ρ. The condition on the right strengthens the irrelevance condition for adverse

selection: it requires that a rejection be optimal even if the n− 1 rejections the seller received were

due to the best signals below sj+1, sj .

6 Maximising Surplus by Coarsening Information

Section 5 showed that efficiency might be lower in a market where buyers are better informed: more

information in the market accentuates the adverse selection problem each buyer faces, counteracting

each buyer’s improved ability to screen the asset’s quality. This invites a question: if a regulator

could coarsen buyers’ information—perhaps through banning the use and dissemination of certain

data—could this raise efficiency? How should a regulator who can use this tool to maximise total

surplus in the market go about this exercise?

In this section, I consider the problem of a regulator who wishes to garble buyers’ experiment E

in order to maximise total surplus in (the most selective) equilibrium. As in the previous section,

I take the number of buyers n to be a primitive. The regulator can choose any finite garbling

EG =
(
SG, pGL , p

G
H

)
of buyers’ experiment E ; i.e. any finite set of outcomes SG =

{
sG1 , s

G
2 , ..., s

G
R

}
and conditional distributions pGθ (.) over it such that for some Markov matrix Tm×R:

pL(s1) · · · pL(sm)

pH(s1) · · · pH(sm)


︸ ︷︷ ︸

=P

×T =

pGL (sG1 ) · · · pGL (s
G
R)

pGH(s
G
1 ) · · · pGH(s

G
R)


︸ ︷︷ ︸

=PG

We can interpret this as a coarsening of the original data available to each buyer. This original

data is generated with the process that matrix P describes. The regulator garbles this data into a

set of summary statistics through the process described by the Markov matrix T. The buyer only

observes this set of summary statistics, whose data generating process conditional on the asset’s

quality can now described by the matrix PG.

Once the regulator chooses the garbled experiment EG, the game proceeds as before; only,

buyers’ experiment E is replaced by EG. An equilibrium, as before, is a pair
(
σG, ψG

)
such that

the strategy σG : SG → [0, 1] is optimal given the interim belief ψG, and the interim belief ψG is

consistent with the strategy σG. I call this the game induced by the garbling EG. I call a garbling
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EG regulator-optimal if total surplus in the most selective equilibrium of the game it induces weakly

exceeds equilibrium total surplus in the game induced by any other garbling of E .

A particularly simple class of garblings are the monotone binary garblings, which (i) have two

possible outcomes, |SG| = 2, and (ii) for a cutoff signal s∗ ∈ S, the entries {tij} of matrix Tm×2

for which P×T = PG are given by:

ti1 =


1 i < i∗

∈ [0, 1] i = i∗

0 i > i∗

ti2 = 1− ti1

I refer to the signal si∗ ∈ S as the threshold signal of the garbling EG.

A monotone binary garbling gives the buyer an “acceptance recommendation”, sGH , when her

original signal realises above a threshold signal si∗ ∈ S, and a “rejection recommendation”, sGL ,

whenever it lies below it. Following these recommendations—accepting trade upon the signal sGH
and rejecting when it upon the signal sGL—need not be an equilibrium strategy in the game induced

by the coarsened experiment EG. When it does, I say that the garbling EG produces incentive

compatible recommendations.

Definition 5. A monotone binary garbling EG produces incentive compatible (IC) recommendations

if the strategy σG, defined below, is an equilibrium strategy in the game induced by EG:

σG(sG) :=

0 sG = sGL

1 sG = sGH

Lemma 7. Where it exists, the regulator-optimal garbling is monotone binary and produces IC

recommendations.

The reason that the regulator can restrict herself to binary garblings is closely connected to a

fundamental principle in information design. Ultimately, a buyer distils the information relayed

by the garbled experiment into which action it recommends: an acceptance, or a rejection. The

regulator can distil information herself—revealing only a recommended action to a buyer37. The

regulator wishes trade to be as likely as possible with a High quality seller but not with a Low quality

one, so she prefers monotone recommendations—those which recommend an acceptance above a

threshold signal. Lemma 7 establishes that monotone recommendations are not at the expense

of incentive compatibility: every garbling that supplies IC recommendations is outperformed by a

monotone binary garbling that supplies IC recommendations.
37Note that coarsening buyers’ experiment E may also create new equilibrium outcomes, some of which yield lower

payoff than the previous least selective equilibrium. Our focus on the most selective equilibrium—besides being
the appropriate focus for this exercise—frees us from the need to worry about this complication and utilise this
fundamental principle.

24



We can adopt the selectivity order for strategies to a selectivity order for monotone binary

garblings, too.

Definition 6. A monotone garbling EG of E is more selective than another, EG′ , if pGθ
(
sGH

)
≤

pG
′

θ

Ä
sG

′
H

ä
for all θ ∈ {L,H}.

Like monotone strategies, and for the same reason, selectivity is a complete order over the set

of monotone binary garblings. Similarly, we can adapt the “irrelevance of adverse selection” notion

to monotone binary garblings as well.

Definition 7. Let EG be a monotone binary garbling of E , with the threshold signal s∗ ∈ S.

Adverse selection is irrelevant under EG either if:

ρ

1− ρ
× pH(s

∗)

pL(s∗)
×
Ç
pGH(s

G
L )

pGL (s
G
L )

ån−1

≥ c

1− c

or either of the following two conditions hold:

1. EG recommends no acceptances; i.e. pθ(sGH) = 0.

2. EG recommends no rejections; i.e. pθ(sGL ) = 0 and ρ
1−ρ ×

Ä
s1

1−s1

än
≥ c

1−c .

Adverse selection is irrelevant under a garbling if a buyer who receives an “acceptance” recom-

mendation need not be concerned about the number of buyers who received “rejection” recommendations—

even if she believes that her acceptance recommendation is based on the lowest signal that might

have triggered it. This condition is also satisfied if the garbling never recommends an “acceptance”,

or if, even if all n buyers were to observe the lowest signal under experiment E , the expected gains

from trade would be positive. When this condition is violated, I say that adverse selection is not

irrelevant under EG.

Proposition 8. If the least selective monotone binary garbling under which adverse selection

is irrelevant produces IC recommendations, it is the regulator-optimal garbling. Otherwise, the

regulator-optimal garbling is either:

• the least selective garbling under which adverse selection is irrelevant, or

• the most selective garbling under which adverse selection is not irrelevant

among monotone binary garblings which produce IC recommendations.

Corollary 9. When the seller’s reservation value c weakly exceeds the prior belief ρ, the regulator-

optimal garbling is the least selective monotone binary garbling under which adverse selection is

irrelevant.

Proposition 8 shows that the regulator wishes to recommend a rejection following every signal

a buyer could observe, unless adverse selection is irrelevant at that signal. Although the regulator
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wishes to maximise a buyer’s expected contribution to trade surplus, she focuses on the “worst case”

where a buyer is the last to receive the seller.

The intuition is intimately connected to the insight the previous section delivers: unless “adverse

selection is irrelevant”, information which pushes buyers to accept trade more often can harm

efficiency. The regulator wishes to censor such information by coarsening buyers’ experiment: if

she were not bound by buyers’ incentives to follow her recommendations, her optimal garbling would

bundle every outcome of the original experiment E into a “rejection recommendation” unless adverse

selection is irrelevant at that outcome. Corollary 9 establishes that when the seller’s reservation

value c weakly exceeds buyers’ prior belief ρ, such recommendations are IC, and hence are adopted

by the regulator.

7 Ultimatum Price Offers by Buyers

In this section, I relax the assumption that the seller trades with the first buyer willing to pay his

reservation value, c. Instead, each buyer he visits offers the seller a take-it-or-leave-it (ultimatum)

price. The seller then decides whether to trade at this price or move on to the next buyer in search

of a better offer. I show that in this extended game, there exists an equilibrium where a buyer

never offers a price above the seller’s value c. Furthermore and crucially, any level of total surplus

that can be achieved in some equilibrium can be achieved in an equilibrium where a buyer never

offers a price above the seller’s value c. Thus, restricting to such equilibria is without loss when

studying the possible levels of equilibrium total surplus.

As before, the seller visits the n prospective buyers sequentially and in a uniformly random

order, and each buyer holds a private signal about the asset’s quality. The seller holds a private

signal about the asset’s quality—this signal is the outcome of a Blackwell experiment Ė . Conditional

on the asset’s quality, the seller’s and buyers’ signals are mutually independent. The seller enjoys

a surplus of o− c if he trades with some buyer at price o, and a surplus of 0 if he does not trade.

A buyer enjoys a surplus of 1 {θ = H} − o if she trades with the seller at price o, and a surplus of

0 if she does not trade. So, trade generates a total surplus of 1 {θ = H} − c.

Each buyer he visits offers the seller a take-it-or-leave-it price for the asset. A buyer’s strategy

ω : S → ∆({0} ∪ [c, 1]) maps every signal she might observe to a distribution from which her offer

is drawn38.

Once the seller receives an offer of ok ∈ [0, 1] from the kth buyer he visits, he updates the prob-

ability qk−1 he places on the asset having High quality to a probability qk. He does so with a belief

updating rule described by qk = ζω (qk−1, ok), where ζω (qk−1, ok) : [0, 1]
2 → [0, 1] is a measurable

function that is continuous in its first argument and can depend on the strategy ω the seller believes

buyers to be using39. This belief updating procedure is commonly known to all players.
38I exclude offers in the interval (0, c) without loss of generality: such offers will always be rejected by the seller

since they are below his reservation value; the buyer might as well offer 0 instead.
39For instance, this updating rule might restrict the seller to update using Bayes’ Rule wherever possible.
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The seller then decides whether to take or refuse the buyer’s offer; his strategy χk(qk, ok) :

[0, 1]2 → [0, 1] is a measurable mapping from his belief that the asset has High quality, qk, and the

kth buyer’s offer, ok, to a probability that he takes this kth offer.

Given a strategy ω∗ for buyers and the seller’s belief qk that the asset has High quality, denote

the maximum expected surplus the seller can achieve after he rejects his kth offer as V ∗
k (qk). The

seller secures zero surplus when he does not trade with any buyer; so, V ∗
n (qn) = 0 for all qn ∈ [0, 1].

We can then calculate each V ∗
k (qk) recursively:

V ∗
k (qk) =

∑
s∈S

(qk × pH(s) + (1− qk)× pL(s))×
1∫

0

max
{
V ∗
k+1 (ζω(qk, ok+1)) , ok+1 − c

}
dω∗(s) (ok+1)

Given a strategy ω∗ for buyers and {χ∗
k}
n
k=1 for the seller, each buyer uses Bayes’ Rule to

calculate the probability that (i) she is the kth buyer to be visited given the seller has not traded

yet, (ii) given the seller is in his kth visit, he will take an offer of ok, and (iii) given the seller takes

that offer in his kth visit and the private signal s ∈ S the buyer observed, the quality is High.

Denote these probabilities as κ∗(k), τ∗k,ok , and H∗
k,ok,s

.

The strategies ω∗ and {χ∗
k}
n
k=1 form an equilibrium of this extended model if and only if:

1. A buyer’s offer maximises her expected surplus given her beliefs about the quality and be-

haviour of the seller:

supp ω∗(s) ⊆ argmax
o∈[0,1]

n∑
k=1

κ∗(k)× τ∗k,o ×
[
H∗
k,o,s − c

]

2. The seller takes an offer if and only if his surplus from doing so weakly exceeds the expected

surplus from refusing it and continuing his visits:

χ∗
k(qk, ok) = 1 {ok − c ≥ V ∗

k (qk)}

Proposition 10. There exists an equilibrium where the seller trades whenever he is offered any

price above c, and a buyer offers the seller either a price of c, or 0. Furthermore, any level of total

surplus that can be achieved in equilibrium can be achieved by one such equilibrium.

Proof. The first part of the Proposition is seen easily: unless no buyer ever offers a price above c,

no buyer has an incentive to offer such a price—the seller will accept the first offer weakly above c.

By Proposition 1, then, the existence of such an equilibrium is guaranteed.

I prove the second part in two steps. I first show that buyers can never be offering a price above

c in equilibrium, unless a seller of some quality receives the same price offer from every buyer.

Then, I show that if a seller of some quality does receive the same price offer from every buyer,

the total surplus in this equilibrium equals total surplus in another equilibrium where the seller is

never offered a price above c.
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Step 1: Observe that the seller’s value function V ∗
k (.) is continuous: V ∗

k (.) is continuous provided

V ∗
k+1(.) is, and V ∗

n (.) is a constant function. So, choose kmax ∈ {1, 2, ..., n} and qmax ∈ [0, 1] such

that V ∗
kmax(qmax) = V max := max

k∈{1,2,...,n},q∈[0,1]
V ∗
k (q). If V max = 0, a seller at most expects an offer

of c; we are done. So, let V max > 0. Then, no buyer can be offering a price above V max + c

in equilibrium: any seller accepts such a price, so the buyer would have a profitable deviation to

V max+c. But then, a seller with a belief qmax must be expecting an offer of V max+c with certainty

in his k + 1th visit. This implies that for some quality θ ∈ {L,H}, buyers offer the price V max + c

after any signal s ∈ supp pθ.

Step 2: Consider an equilibrium where for some quality θ ∈ {L,H}, buyers offer the price V max+c >

c after any signal s ∈ S such that s ∈ supp pθ.

1. If buyers offer this price for any s ∈ S, there is another equilibrium where they instead offer

the seller c after every signal. In both equilibria, the seller trades with the first buyer he

visits, regardless of his quality.

2. If buyers offer this price for any s ∈ supp pH , the seller trades with the first buyer who

offers this price whenever he has High quality. Buyers must be offering 0 after any s ∈

supp pL \ supp pH . There is then another equilibrium achieving the same total surplus where

buyers offer c after any s ∈ supp pH but 0 after any any s ∈ supp pL \ supp pH . The seller

trades with the first buyer who offers c.

3. If buyers offer this price for any s ∈ supp pL, the seller trades with the first buyer whenever

he has Low quality. Buyers cannot be ever offering the seller a price of 0 following s ∈

supp pH \ supp pL; otherwise, a buyer would have a strictly positive deviation to an offer of

c, which guarantees a profitable trade when she is the last buyer to be visited by the seller.

So, the seller trades with probability one regardless of his quality. There is then another

equilibrium where buyers offer the seller a price of c regardless of their signal, and the seller

trades with probability one at this price. This equilibrium achieves the same total surplus.
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8 Supplemental Appendix

Section 4 claimed that the outcome in a large market might be partially informative about the

common value of the asset. This section presents a numerical example to demonstrate this claim.

Let buyers’ experiment E be binary; S = {0.2, 0.8} and:

pL(s) =

0.8 s = 0.2

0.2 s = 0.8
pH(s) =

0.2 s = 0.2

0.8 s = 0.8

Furthermore, let buyers’ common prior be ρ = 0.5 and the seller’s reservation value be c = 0.6. For

any number of buyers, the equilibrium of this game is unique40: buyers always reject upon the low

signal, σ∗n(0.2) = 0, but accept with some probability upon the high signal, σ∗n(0.8) ∈ [0, 1].

Figures 8.b through 8.f plot (a) total surplus in the market, and the probabilities that (b) a

buyer trades upon receiving the high signal, (c and d) some buyer trades with the seller given his

quality, (e and f) the probability that a seller has High quality given he trades with some buyer or

no buyer, as the number of buyers rises from 1 to 50.

Figure 8.a: Total surplus Figure 8.b: Probability that
buyer accepts upon s = 0.8

40This follows a simple argument. No buyer can accept trade upon the low signal, since ψ∗ ≤ 0.5, so
Pψ∗ (θ = H | 0.2) ≤ 0.2 < c. As Lemma 15 shows, the interim belief is strictly decreasing in the probability that
buyers approve upon the high signal. Thus, buyers either always accept trade at this signal, or there is a unique inte-
rior probability of acceptance that—given the interim belief consistent with those strategies—buyers are indifferent
to accept.
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Figure 8.c: Probability that
some buyer trades when θ = H

Figure 8.d: Probability that
some buyer trades when θ = L

Figure 8.e: Probability that
θ = H given some buyer trades

Figure 8.f: Probability that
θ = H given no buyer trades

Once the number of buyers in the market exceeds 3, total surplus in the market equals 0—

surplus in the no-information benchmark. A buyer only trades if she receives the high signal. Even

then, she rejects the seller with a strictly positive probability. This probability increases with the

number of buyers in the market. However, the probability that some buyer trades with the seller

reaches a constant level: 0.95 if he has High quality, and 0.63 if he has Low quality. Despite

having no bearing on market participants’ surplus, trade is informative about the seller’s quality:

the probability that the seller has High quality conditional on trading is 0.6 not ρ = 0.5; and the

probability she has High quality conditional on not trading reaches 0.1141.

41For clarity, the figures illustrate results as n → 50; however, these asymptotic values remain valid as n → 1000.
As n→ 1000, the probability that a buyer accepts trade upon a high signal converges to 0.
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9 Proof Appendix

9.1 Useful Definitions and Notation

In what follows, I occasionally operate with the likelihood ratios of beliefs for convenience. The

reader can easily verify the identities:

ψ

1− ψ
=

ρ

1− ρ
× νH (σ; E)
νL (σ; E)

Pψ (θ = H | si)
1− Pψ (θ = H | si)

=
ψ

1− ψ
× si

1− si

Through similar reasoning, the reader can verify that it is optimal for a buyer to accept trade when:

Pψ (θ = H | si)
1− Pψ (θ = H | si)

>
c

1− c

Some strategies require buyers to randomise upon observing a particular outcome. To facilitate

technical discussion, where it is warranted I assume that each buyer observes the realisation of a tie-

breaking signal u ∼ U [0, 1] alongside the outcome of her experiment. This signal is not informative

about the asset’s quality: it is distributed independently from it conditional on the experiment’s

outcome. I denote the outcome of buyer i’s experiment as si and her tie-breaking signal as ui.

Without loss, buyer i accepts trade if and only if σ(si) ≤ ui; where σ is her strategy. I call the pair

(si, ui) the score buyer i observes for the seller.

Definition 8. The tuple Zi = (si, ui), where ui
IID∼ U [0, 1] is the score buyer i observes for

the seller. The seller’s score profile z is the set of scores each buyer observes; z = {(si, ui)}ni=1.

Analogously, the seller’s signal profile s = {si}ni=1 is the set of outcomes of each buyer’s experiment.

Some proofs in Section 9.3 require comparing interim beliefs across pairs of strategies and

experiments; (σ, E). For convenience, I define the mapping from such a pair to the interim belief

consistent with them as Ψ(.; E) : [0, 1]n → [0, 1]:

Ψ(σ; E) := ρ× νH (σ; E)
ρ× νH (σ; E) + (1− ρ)× νL (σ; E)

Wherever necessary, I treat each strategy σ : S → [0, 1] for an experiment E as a vector in the

compact set [0, 1]m ⊂ Rn. This is a finite dimensional vector space, so I endow it with the metric

induced by the taxicab norm without loss of generality (see Kreyszig (1978) Theorem 2.4-5):

||σ′ − σ|| =
m∑
j=1

|σ′(sj)− σ(sj)| for any two strategies σ′ and σ

Note that the interim belief function Ψ(.; E) is thus a continuous function of buyers’ strategies42.

42rθ is a continuous function of σ, thus both the nominator and denominator are strictly positive continuous
functions of σ.

31



Definition 9. Where the experiment E is binary, smute
L is the strongest level of bad news for which

there is an equilibrium where a buyer trades regardless of her signal:

ρ

1− ρ
×

smute
L

1− smute
L

=
c

1− c

9.2 Omitted Results

Lemma 11. Let σ∗ and σ be two monotone strategies such that (i) σ∗ is more selective than σ,

and (ii) σ∗ is an equilibrium strategy. Then, total surplus is higher under σ∗: Π(σ∗; E) ≥ Π(σ; E).

Proof. Let z be the seller’s score profile. Take an equilibrium strategy σ∗ and a less selective

strategy σ such that:

σ(s)− σ∗(s) =

ε s =
¯
s

0 otherwise

for some ε > 0, where
¯
s := min{s ∈ S : σ∗(s) < 1}. I show that:

lim
ε→0

Π(σ; ε)−Π(σ∗; ε) ≤ 0

By Lemma 14, this establishes the result.

Now, let Z ⊂ (S × [0, 1])n be the set of score profiles under which some buyer trades under σ,

but all buyers reject the seller under σ∗:

z ∈ Z ⇐⇒

σ∗(si) > ui for all i ∈ {1, 2, . . . , n},

and

σ(si) ≤ ui for some i ∈ {1, 2, . . . , n}.

Furthermore, for a given score profile z, let # be the number of buyers whose observed scores are

such that σ(si) ≥ ui > σ∗(si). These buyers would accept trade under the strategy σ, but not

under σ∗.

The seller’s eventual outcome differs between the strategy profiles σ and σ∗ if and only if his

score profile z lies in Z. Furthermore, his eventual outcome can only change from a rejection by all

buyers in σ∗ to an approval by some buyer in σ. Thus:

Π(σ; E)−Π(σ∗; E) = [P(θ = H | z ∈ Z)− c]× P(z ∈ Z)

∝ P(θ = H | z ∈ Z)− c

Focus therefore, on the probability that θ = H given the seller’s signal profile lies in Z:

P (θ = H | z ∈ Z) =
n∑
i=1

P (θ = H | # = i)× P (# = i)

P(z ∈ Z)
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Now note:

P (# = i | θ) = (pθ(
¯
s))i × (1− pθ(

¯
s))n−i × εi

and thus P (# = i) ∝ εi. Since P(z ∈ A) =
n∑
i=1

P (# = i), we have lim
ε→0

P(#=i)
P(z∈A) = 0 for any i > 1.

Thus:

lim
ε→0

P (θ = H | z ∈ A)− P (θ = H | # = 1) = 0

I conclude the proof by showing that P (θ = H | # = 1) ≤ c as ε→ 0:

lim
ε→0

P (θ = H | # = 1)

P (θ = L | # = 1)
= lim

ε→0

P (θ = H)

P (θ = L)
× P (# = 1 | θ = H)

P (# = 1 | θ = L)

= lim
ε→0

P (θ = H)

P (θ = L)
×
Å
rH(σ; E)
rL(σ; E)

ãn−1

× pH(
¯
s)

pL(
¯
s)

=
P (θ = H)

P (θ = L)
×
Å
rH(σ

∗; E)
rL(σ∗; E)

ãn−1

× pH(
¯
s)

pL(
¯
s)

≤ ψ∗

1− ψ∗ × pH(
¯
s)

pL(
¯
s)

≤ c

1− c

where ψ∗ = Ψ(σ∗; E) is the interim belief consistent with σ∗. The penultimate inequality holds due

to the straightforward fact that:

ψ∗

1− ψ∗ =
ρ

1− ρ
×

1 + r∗H + ...+ (r∗H)
n−1

1 + r∗L + ...+ (r∗L)
n−1

≤ ρ

1− ρ
×
Å
r∗H
r∗L

ãn−1

where r∗θ := rθ(σ
∗; E). The last inequality is due to the fact that

¯
s ∈ S is optimally rejected under

σ∗.

Lemma 12. Suppose there is a single buyer, n = 1. Equilibrium total surplus under experiment

E ′ exceeds that under E regardless of the seller’s reservation value c ∈ [0, 1] and buyer’s prior belief

ρ ∈ [0, 1] if and only if E ′ is (Blackwell) more informative than E .

Proof. The sufficiency part of this Lemma follows from Blackwell’s Theorem (Blackwell and Girshick

(1954), Theorem 12.2.2). To show necessity, I fix an arbitrary prior belief ρ for the evaluator.

Let qj be the posterior belief the buyer forms about the asset’s quality upon observing the

outcome sj ∈ S:

qj =
ρ× sj

ρ× sj + (1− ρ)× (1− sj)

Furthermore, let F (.) and F ′(.) be the CDFs of the posterior beliefs E and E ′ induce, respectively,

for this prior belief ρ:

F (q) = (1− ρ)×
∑

s∈S:s≤q
pL(s) + ρ×

∑
s∈S:s≤x

pH(s)

F ′(q) = (1− ρ)×
∑

s∈S:s≤q
p′L(s) + ρ×

∑
s∈S:s≤x

p′H(s)

33



Equilibrium total surplus (and the buyer’s expected payoff) under E is given by:

1∫
c

(q − c)dF (q) =

1∫
c

qdF (q)− c× (1− F (c)) = (1− c)−
1∫
c

F (q)dq

An analogous expression gives equilibrium total surplus under E ′. For the former to exceed the

latter for any c ∈ [0, 1], we must have:

1∫
c

(
F (q)− F ′(q)

)
dq ≥ 0

which is equivalent to E ′ being Blackwell more informative than E43.

Lemma 13 proves useful when proving Theorem 3, the main result of Section 5.2. This Lemma

can also be used towards an alternative and direct proof for the equilibrium existence claim of

Proposition 1.

Lemma 13. For each j ∈ {1, 2, ...,m}, let σj be the strategy defined as:

σj(s) =

0 s < sj

1 s ≥ sj

and ψj be the interim belief consistent with this strategy. Unless σj is itself an equilibrium strategy:

i There is an equilibrium strategy σ∗ that is more selective than σj if Pψj (θ = H | sj) < c.

ii There is an equilibrium strategy σ∗ that is less selective than σj if Pψj (θ = H | sj−1) > c.

Proof. Abusing notation slightly, I add two fully revealing outcomes s0 and sm+1 to the set S

(duplicating s1 and sm if either of them are already fully revealing), and denote the strategy which

never accepts trade as σm+1:

sm+1

1− sm+1
= ∞ s0

1− s0
= 0

ψm+1

1− ψm+1
=

ρ

1− ρ

Claim i.

The strategy σm+1 is the most selective strategy buyers can adopt, and is an equilibrium strategy

unless:
sm

1− sm
× ψm+1

1− ψm+1
>

c

1− c

43See Müller and Stoyan (2002), Theorem 1.5.7. The Blackwell order between signal structures is equivalent to
the convex order between the posterior belief distributions they induce; see Gentzkow and Kamenica (2016).
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So, assume this condition is satisfied. Likewise, the strategy σk for k ≥ j is an equilibrium if the

following inequality is satisfied:

sk
1− sk

× ψk
1− ψk

≥ c

1− c
≥ sk−1

1− sk−1
× ψk

1− ψk
(9.1)

So, assume inequality 9.1 is violated for every k ≥ j. This gives us:

sm+1

1− sm+1
× ψm+1

1− ψm+1
>

c

1− c
>

sj
1− sj

× ψj
1− ψj

(9.2)

where the last part of this inequality is by hypothesis.

Now, let k∗ ∈ {j, j + 1, ...,m} be the first index for which the following inequality is satisfied:

sk∗+1

1− sk∗+1
× ψk∗+1

1− ψk∗+1
≥ c

1− c
≥ sk∗

1− sk∗
× ψk∗

1− ψk∗

such a k∗ must exist due to inequality 9.2. But since inequality 9.1 is violated, we must have:

sk∗

1− sk∗
× ψk∗+1

1− ψk∗+1
>

c

1− c
≥ sk∗

1− sk∗
× ψk∗

1− ψk∗

But since the function Ψ(σ; E) is continuous in buyers’ strategy σ, we can then find some strategy

σ∗:

σ∗(s) =


1 s > sk∗

∈ [0, 1] s = sk∗

0 s < sk∗

such that:
sk∗+1

1− sk∗+1
× Ψ(σ∗; E)

1−Ψ(σ∗; E)
≥ c

1− c
=

sk∗

1− sk∗
× Ψ(σ∗; E)

1−Ψ(σ∗; E)

The strategy σ∗ is thus an equilibrium strategy. It is clearly more selective than σj ; since it is

more selective than σk∗ , where k∗ ≥ j.

Claim ii.

For any k ∈ {1, 2, ..., j}, the strategy σk is an equilibrium if the inequality 9.1 is satisfied. So, as

earlier, assume 9.1 is violated for every such k. Then, we get:

sj
1− sj

× ψj
1− ψj

≥ sj−1

1− sj−1
× ψj

1− ψj
>

c

1− c
>

s1
1− s1

× ψ1

1− ψ1

where the second inequality in the chain follows by hypothesis and the last inequality follows from

the violation of inequality 9.1 for k = 1. We can now repeat the argument we constructed after

inequality 9.2 to prove Claim i, to prove the existence of an equilibrium strategy σ∗ that is less

selective than σj .

35



9.3 Omitted Proofs

Proposition 1. Let Σ be the set of equilibrium strategies. Then:

1. Σ is non-empty and compact.

2. Any equilibrium strategy σ∗ is monotone: for any σ∗ ∈ Σ, σ∗(s) > 0 for some s ∈ S implies

that σ∗(s′) = 1 for every s′ ∈ S′ such that s′ > s.

3. All equilibria exhibit adverse selection: ψ∗ ≤ ρ for any interim belief ψ∗ consistent with an

equilibrium strategy σ∗ ∈ Σ.

Proof. In what follows, I treat each strategy σ : S → [0, 1] as a vector in the compact set [0, 1]m ⊂

Rn, endowed with the taxicab metric (see the end of Section 9.1). I start by proving that any

equilibrium strategy must be monotone and all equilibria exhibit adverse selection. Using these

observations, I prove that the set of equilibrium strategies is non-empty and compact.

2. Any equilibrium strategy is monotone.

Any equilibrium strategy σ∗ must be optimal against the interim belief ψ∗ consistent with it.

Whenever ρ ∈ (0, 1), ψ∗ = Ψ(σ∗; E) ∈ (0, 1), and so Pψ∗ (θ = H | s′) > Pψ∗ (θ = H | S = s) for

s′, s ∈ S such that s′ > s.

3. All equilibria exhibit adverse selection.

A fortiori, Ψ(σ; E) ≤ ρ for any monotone strategy σ. To see this, note that pH(.) first order stochas-

tically dominates pL(.) since it likelihood ratio dominates it44. Therefore, νL(σ; E) ≥ νH(σ; E). The

result then follows since Ψ(σ;E)
1−Ψ(σ;E) =

ρ
1−ρ ×

νH(σ;E)
νL(σ;E) .

1. The set of equilibrium strategies is non-empty and compact.

i The set of equilibrium strategies is non-empty.

Define Φ(.) : [0, 1]m → 2[0,1]
m to be the buyers’ best response correspondence. Φ(.) maps any

strategy σ to the set of strategies that are optimal against the interim belief Ψ(σ; E) it induces:

Φ(σ) =
{
σ′ ∈ [0, 1]m : σ′ is optimal against Ψ(σ; E)

}
A strategy σ∗ is an equilibrium strategy if and only if it is a fixed point of buyers’ best response

correspondence; σ∗ ∈ Φ(σ∗). I establish that the correspondence Φ has at least such fixed point

through Kakutani’s Fixed Point Theorem.

Φ is trivially non-empty; every interim belief has some strategy optimal against it. It is also

convex valued; if two distinct approval probabilities are optimal after some outcome s ∈ S, any

approval probability is optimal upon that outcome.
44Theorem 1.C.1 in Shaked and Shanthikumar (2007).
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The only task that remains is to prove that Φ is upper-semi continuous. For this, take an

arbitrary sequence of strategies {σn} such that σn → σ∞. Denote the interim beliefs consistent

with these strategies as ψn := Ψ(σn; E). Since Ψ(.; E) is continuous in buyers’ strategies, we also

have ψn → ψ∞ where ψ∞ = Ψ(σ∞; E). Now, take a sequence of strategies {σ∗n} where σ∗n ∈ Φ(σn).

Note that every σ∗n is monotone since optimality against any interim belief ψ ∈ (0, 1) requires

monotonicity. We want to show that Φ is upper semicontinuous; i.e.:

σ∗n → σ∗∞ =⇒ σ∗∞ ∈ Φ(σ∞)

By the Monotone Subsequence Theorem, the sequence {σ∗n} has a subsequence σ∗nk → σ∗∞

of strategies whose norms ||σ∗nk || are monotone in their indices nk. Here, I take the case where

these norms are increasing, the proof is analogous for the opposite case. Since σ∗∞ is the limit of

a subsequence of monotone strategies, it must be a monotone strategy too. Assuming otherwise

leads to a contradiction; for any s, s′ ∈ S such that s′ > s:

σ∗∞(s) > 0 & σ∗∞(s′) < 1 =⇒ ∃N ∈ N s.t. ∀ nk ≥ N σ∗nk(s) > 0 & σ∗nk(s
′) < 1

Now let s̄ be the highest outcome for which σ∗∞(s̄) > 0. I show that:

• If σ∗∞(s̄) ∈ (0, 1), then:
ψ∞

1− ψ∞
× s̄

1− s̄
=

c

1− c

• If σ∗∞(s̄) = 1, then:

ψ∞
1− ψ∞

× s

1− s

≤ c
1−c s < s̄

≥ c
1−c s ≥ s̄

The first case easily follows by noting that:

σ∗∞(s̄) ∈ (0, 1) =⇒ σ∗nk(s̄) ∈ (0, 1) =⇒ ψnk
1− ψnk

× s̄

1− s̄
=

c

1− c
=⇒ ψ∞

1− ψ∞
× s̄

1− s̄
=

c

1− c

for all nk ≥ N ′ ∈ N. The second case follows similarly, by noting that σ∗∞(s̄) = 1 and σ∗∞(s′) = 0

for all s′ < s̄ implies σ∗nk(s̄) > 0 and σ∗nk(s
′) = 0 for all nk ≥ N ′′ ∈ N.

ii The set of equilibrium strategies is compact.

Σ is a subset of [0, 1]m and therefore bounded, hence it suffices to show that is closed. Let {σ∗∗n }

be a sequence of equilibrium strategies. Note that this means σ∗∗n ∈ Φ(σ∗∗n ). Since Φ(.) is upper

semicontinuous, σ∗∗n → σ∞ implies σ∞ ∈ Φ(σ∞), and therefore σ∞ is an equilibrium strategy itself.

Proposition 3. Equilibrium total surplus is bounded above by the full-information benchmark Πf

and below by the no-information benchmark Π∅. Furthermore, it is higher under more selective

37



equilibrium strategies:

max {0, ρ− c} = Π∅ ≤ Π(σ∗∗; E) ≤ Π(σ∗; E) ≤ Πf = ρ× (1− c)

where σ∗ and σ∗∗ are two equilibrium strategies such that σ∗∗ is more selective than σ∗.

Proof. This is an immediate corollary to Lemmas 11 and 14 below; both of independent interest.

Lemma 14. Take three monotone strategies σ′′, σ′ and, σ, ordered from the least selective to the

most. If Π(σ′; E) ≤ Π(σ; E), then Π(σ′′; E) ≤ Π(σ′; E).

Proof. For the three strategies σ′′, σ′, and σ, consider three sets Z,Z ′, Z ′′ ⊂ (S × [0, 1])n where the

seller’s score profile z might lie:

z ∈


Z if z trades with some buyer under σ′′ but not σ

Z ′ if z trades with some buyer under σ′ but not σ

Z ′′ if z trades with some buyer under σ′′ but not σ′

Notice that Z ′ ∩Z ′′ = ∅ and Z ′ ∪Z ′′ = Z. We can write the difference between total surplus under

different strategies as:

Π(σ′; E)−Π(σ; E) = P
(
z ∈ Z ′)× [

P
(
θ = H | z ∈ Z ′)− c

]
and:

Π(σ′′; E)−Π(σ′; E) = P
(
z ∈ Z ′′)× [

P
(
θ = H | z ∈ Z ′′)− c

]
Therefore we want to prove that:

P
(
θ = H | z ∈ Z ′) ≤ c =⇒ P

(
θ = H | z ∈ Z ′′) ≤ c

Now, note that P (θ = H | z ∈ Z) is a convex combination of P (θ = H | z ∈ Z ′) and P (θ = H | z ∈ Z ′′).

Furthermore:

P (θ = H | z ∈ Z) ≥ P
(
θ = H | z ∈ Z ∩ Z ′′) = P

(
θ = H | z ∈ Z ′′)

which then implies:

P
(
θ = H | z ∈ Z ′′) ≤ P (θ = H | z ∈ Z) ≤ P

(
θ = H | z ∈ Z ′) ≤ c

Theorem 1. Let Πn (σ̂; E) be total surplus under the most selective equilibrium in a market with

n buyers. If E has an outcome that fully reveals High quality (sm = 1), the sequence {Πn (σ̂; E)}∞n=1
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is eventually increasing and converges to surplus in the full-information benchmark. Otherwise, it

is eventually decreasing and converges to surplus in the no-information benchmark.

Proof. For each j ∈ {1, 2, ...,m}, define σj to be the strategy:

σj(s) :=

0 s < sj

1 s ≥ sj

Moreover, let Fθ(x) =
∑

s∈S:s≤x
pθ(x). In a market with n buyers, the interim belief ψj:n consistent

with buyers using the strategies σj is then implicitly given by:

ψj:n
1− ψj:n

=

∑n−1
k=0 FH(sj−1)

k∑n−1
k=0 FL(sj−1)k

Note that for all j > 1, the RHS is bounded and strictly decreasing in n, so the sequence {ψj:n} is

convergent.

Case 1: sm = 1.

To prove the Theorem’s statement for this case, I first show that ψm:n
n→ 0. Let Xn be the

random variable that is uniformly distributed over the set
{
FH(sm−1)

k
}n−1

k=0
. Then, note that:

ψm:n

1− ψm:n
=

∑n−1
k=0 FH(sm−1)

k∑n−1
k=0 FL(sm−1)k

= E [Xn]

Now, fix any x > 0. Since FH(sm−1)
k is strictly decreasing in k, for any δ < 1 of our choice, we can

find some Nx;δ ∈ N such that for all n ≥ Nx;δ implies P (Xn ≤ x) ≥ δ and E [Xn] ≤ δx + (1 − δ).

Fixing x = ε
2δ for some ε > 0 small, we have E [Xn] ≤ ε

2 + 1 − δ. Since we can take δ arbitrarily

close to 1, this shows that E [Xn] → 0, proving this first claim.

Since buyers must always accept to trade upon observing sm = 1 in equilibrium, this implies

that there is some N ∈ N for which σm is the most selective equilibrium strategy for all n ≥ N .

So, for n ≥ N , a seller with a Low quality asset never trades. Moreover, every additional buyer

increases the probability that a seller with a High quality asset trades. As n → ∞, such a seller

trades almost surely. We thus prove that Πn (σ̂; E) → Πf .

Case 2: sm < 1

The case where buyers’ experiment E is uninformative is trivial; it always yields the no-

information benchmark. So, I assume that sm ̸= s1.

For any j ∈ {1, 2, ...,m}, the sequence
¶

ψj;n
1−ψj;n × sj

1−sj

©∞
n=1

is bounded and monotone decreasing,

thus convergent. Let Lj be the limit of this sequence. If Lm < c
1−c , by Lemma 13, there is some

N ′ ∈ N such that for all n ≥ N ′, the most selective equilibrium is more selective than σm. So,

buyers must be indifferent when they trade—expected trade surplus must be 0. Since total surplus

is bounded below by Π∅, we conclude that Πn (σ̂; E) = Π∅ = 0 for all n ≥ N ′.

Now consider the case Lm ≥ c
1−c . Since ψj:n is decreasing in n, the most selective equilibrium
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with n buyers, σ̂n, must get weakly more selective with n. So, the sequence {rθ(σ̂n; E)}∞n=1 is

weakly increasing in n, convergent, and Cauchy. If for any N ∈ N, σ̂N is more selective than σm,

we are done by the argument in the preceding paragraph. Otherwise, the sequence {rθ(σ̂n; E)}∞n=1

converges to a number below 1. If are both constant at 0, we are done—total surplus is equal to

that under the no-information benchmark along the sequence. Otherwise, rL(σ̂n; E) > rH(σ̂n; E)

along the sequence. Since both sequences are Cauchy, there exists some N ∈ N and M ≥ N such

that for all m ≥M , we have:

ρ× (1− c)× [1− rH(σ̂m; E)]m − (1− ρ)× c× [1− rL(σ̂m; E)m]

≈ρ× (1− c)× [1− rH(σ̂N ; E)]m − (1− ρ)× c× [1− rL(σ̂N ; E)m]

>ρ× (1− c)× [1− rH(σ̂N ; E)]m+1 − (1− ρ)× c×
[
1− rL(σ̂N ; E)m+1

]
≈ρ× (1− c)× [1− rH(σ̂m+1; E)]m+1 − (1− ρ)× c×

[
1− rL(σ̂m+1; E)m+1

]
This proves that total surplus is eventually decreasing.

Furthermore, since there is at least one outcome of the experiment E where a buyer surely trades

with the seller, as n→ ∞, the seller trades almost surely regardless of quality. Hence, total surplus

converges to ρ − c. Since total surplus can never be negative, it must be that Π∅ = ρ − c in this

case.

Theorem 2. Let buyers’ experiment E be binary. Then, equilibrium⋆ total surplus is increasing

in the strength of good news (sH) but is quasiconcave and eventually decreasing in the strength of

bad news (sL).

I will use Lemmas 15, 17, and 18 below, of independent interest, to prove Theorem 2. Through-

out, I denote the most and least selective equilibrium strategies under the experiment E as σ̂∗E and

σ̌∗E , respectively. I drop the subscript whenever the experiment in question is obvious.

Lemma 15. Let E be a binary experiment, with outcomes in S = {sL, sH}; sL ≤ sH . Ψ(σ; E) is:

i strictly increasing in σ(sL), whenever σ(sH) = 1,

ii strictly decreasing in σ(sH) whenever σ(sL) = 0.

Proof. Part i:

Let σ(sL) ∈ (0, 1) and σ(sH) = 1. The interim belief Ψ(σ; E) is then given by:

Ψ(σ; E) = P (θ = H | visit received)

=

n−1∑
i=0

P(visited after ith rejection | visit received)× E [θ = H | i sL signals]

=
n−1∑
i=0

P(visited after ith rejection)
P(visit received)

× E [θ = H | i sL signals]
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Note that E [θ = H | i sL signals] < E [θ = H | i+1 sL signals]; since every sL signal is further evi-

dence for θ = L. We have:

P( visited after ith rejection) =P
(
buyer was (i+1)st in order | seller got i rejections

)
× P (seller got i rejections)

=
1

n
× P(i sL signals)× [1− σ(sL)]

i

The proof is completed by noting that:

P( visited after (i+1)st rejection)
P( visited after ith rejection)

=
P(i+1 sL signals)
P(i sL signals)

× [1− σ(sL)]

decreases, and thus Ψ(σ; E) increases, in σ(sL).

Part ii:

Now take σ(sL) = 0. We then have:

rH(σ; E) = 1− pH(sH)σ(sH) rL(σ; E) = 1− pL(sH)σ(sH)

and:

Ψ(σ; E) ∝
1 + rH + ...+ rn−1

H

1 + rL + ...+ rn−1
L

=
1− rnH
1− rnL

× 1− rL
1− rH

=
1− rnH
1− rnL

× pL(sH)

pH(sH)

∝
1− rnH
1− rnL

=
1− (1− pH(sH)σ(sH))

n

1− (1− pL(sH)σ(sH))
n

Differentiating the last expression with respect to σ(sH) and rearranging its terms reveals that this

derivative is proportional to:

sH
1− sH

×
Å
rH
rL

ãn−1

− 1− (rH)
n

1− (rL)
n

The positive term is the likelihood ratio of one sH signal and n − 1 rejections, and the negative

term is the likelihood ratio from at most n− 1 rejections. Since acceptances only happen with sH

signals, the negative term strictly exceeds the positive term. This can be verified directly, too:

1− (rH)
n

1− (rL)n
>

sH
1− sH

×
Å
rH
rL

ãn−1

⇐⇒ 1− (rH)
n

1− (rL)n
× 1− rL

1− rH
>

Å
rH
rL

ãn−1

⇐⇒ 1 + ...+ (rH)
n−1

1 + ...+ (rL)n−1
>

Å
rH
rL

ãn−1

The last inequality can be verified easily. Thus, Ψ(σ; E) decreases in σ(sH).

41



The Corollary below follows from Lemma 15. Let both E ′ and E are binary experiments, where

the former is Blackwell more informative than the latter. If, under both experiments, every buyer

accepts upon “good news” and rejects upon “bad news”, the interim belief under E ′ is lower.

Corollary 16. Let E ′ and E be two binary experiments, where the former is Blackwell more

informative than the latter. Let the strategies σ′ and σ for these respective experiments be defined

as:

σ′(s′) :=

0 s′ = s′L

1 s′ = s′H

σ(s) :=

0 s = sL

1 s = sH

Then, Ψ(σ′; E ′) ≤ Ψ(σ; E).

Proof. Establishing that this holds for a pair (E ′, E) for which either (i) s′H > sH and sL = s′L, or

(ii) s′H = sH and sL > s′L suffices. I will only prove the first case, the second is analogous. Below

I show that the outcome induced by σ under experiment E can be replicated by some strategy σ̃

under experiment E ′, where σ̃(sL) > 0 and σ̃(sH) = 1. Then, the desired conclusion follows from

Lemma 15.

Take the pair (σ, E). The probabilities that a buyer accepts or rejects trade, conditional on θ,

is given by:

Pσ (rejected | θ = H)

Pσ (rejected | θ = L)
=

sL
1− sL

Pσ (accepted | θ = H)

Pσ (accepted | θ = L)
=

sH
1− sH

For the pair (σ̃, E ′) where σ̃(s′H) = 1, we have:

Pσ̃ (rejected | θ = H)

Pσ̃ (accepted | θ = L)
=

sL
1− sL

Pσ̃ (accepted | θ = H)

Pσ̃ (accepted | θ = L)
=
p′H(sH) + σ̃(sL)p

′
H(sL)

p′L(sH) + σ̃(sL)p′L(sL)

where {p′L, p′H} are the distributions for the experiment E ′. It is easy to verify that the expression

on the right falls from s′H
1−s′H

to 1 monotonically and continuously as σ̃(sL) rises from 0 to 1. Thus,

there is a unique interior value of σ̃(sL) that replicates the outcome of (σ; E).

Lemma 17. Let E be a binary experiment, with outcomes in S = {sL, sH}; sL ≤ sH . Let σ⋆ be

buyers’ equilibrium strategy, either in the most or least selective equilibrium. Then, σ⋆(sL) ∈ {0, 1}.

Proof. I start by proving this for the least selective equilibrium; i.e. σ̌∗(sL) ∈ {0, 1}. For smute
L

defined in Definition 9, observe that when sL ≥ smute
L , σ(sL) = σ(sH) = 1 is an equilibrium; so we

must have σ̌∗(sL) = 1. The strategy σ defined by σ(sH) = σ(sL) = 1 gives rise to the interim belief

Ψ(σ; E) = ρ, which in turn renders approving upon the outcome sL optimal. In turn, if sL < smute
L ,

we must have σ∗(sL) = 1 for any equilibrium strategy; since the equilibrium interim belief always

lies below the prior belief (Proposition 1).
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Now consider the most selective equilibrium strategy; σ̂∗. For contradiction, let 1 > σ̂∗(sL) > 0

and σ̂∗(sH) = 1. Lemma 15 establishes that the interim belief falls as σ(sL) falls; which implies

there must be another, more selective equilibrium strategy σ∗ such that σ∗(sL) = 0 and σ∗(sH) = 1.

Lemma 17 establishes that when their experiment E is binary, buyers never mix upon seeing “bad

news”, s = sL, neither in the most nor the least selective equilibrium. Following up, Lemma 18

establishes that a more informative binary experiment pushes buyers to reject upon bad news in

both equilibria.

Lemma 18. Let E be a binary experiment, with outcomes in S = {sL, sH}; sL ≤ sH . Buyers’

acceptance probabilities upon “bad news”, s = sL, in the least and most selective equilibrium

strategies are given by:

σ̌∗(sL) =

1 sL ≥ smute
L

0 sL < smute
L

σ̂∗(sL) =

1 sL < s†L(sH)

0 sL ≥ s†L(sH)

where s†L(.) is an increasing function of sH , and s†L(sH) ≥ ssafe
L .

Proof. Note that there exists an equilibrium where σ(sL) = 1 if and only if:

ρ

1− ρ
× sL

1− sL
≥ c

1− c

which, combined with Lemma 17, proves the part of the Lemma for the selective equilibrium.

Now, define the strategies σ0 as σ1 as:

σ0(s) =

0 s = sL

0 s = sH

σ1(s) =

0 s = sL

1 s = sH

A necessary and sufficient condition for an equilibrium σ∗ where σ∗(sL) = 0 to exist is:

Ψ(σ1; E)
1−Ψ(σ1; E)

× sL
1− sL

≤ c

1− c

Sufficiency follows since either:

Ψ(σ0; E)
1−Ψ(σ0; E)

× sH
1− sH

≤ c

1− c

which implies σ0 is an equilibrium, or there is an equilibrium strategy σ∗ such that σ∗(sL) = 0 and

σ∗(sH) > 0 by Lemma 15. The condition is necessary, since any strategy that is less selective than

σ1 induces a higher interim belief, by Lemma 15.

By Corollary 16, whenever this necessary and sufficient condition holds for an experiment E , it
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also holds for a (Blackwell) more informative experiment E ′. Moreover, whenever the low signals

are rejected in the least selective equilibrium, they must be in the most selective equilibrium. This

concludes the proof.

Proof, Theorem 2: By Lemma 18, Blackwell improving buyers’ experiment shifts both their least

selective and most selective equilibrium strategies once from always accepting trade to rejecting

upon the low signal. By Lemma 14, this shift in buyers’ strategy increases efficiency—and therefore

each buyer’s expected surplus.

Let {σα}α∈[0,1] be the family of strategies where buyers reject upon the low signal:

σα(s) =

0 s = sL

1 s = sH

By Lemma 15, the interim belief ψα that the strategy σα induces is strictly decreasing in α.

Thus, at most one of these can be an equilibrium strategy for a given experiment. Furthermore,

whenever buyers’ expected surplus from σ1 is weakly positive, this must be the equilibrium strategy;

decreasing α can only make approving upon the high signal more profitable. Hence, whenever buyers

reject upon the low signal in equilibrium, efficiency is given by: Π(σ∗; E) = max {0,Π(σ1; E)}. The

Theorem then follows from the Claim below:

Claim. max {0,Π(σ1; E)} is:

i weakly increasing in sH whenever there is some equilibrium strategy σ∗ s.t. σ∗(sL) = 0.

ii hump-shaped in sL. As sL falls, it:

• weakly increases when sL ≥ sasL ,

• weakly decreases when sL ≤ sasL

where sasL is defined implicitly as:

ρ

1− ρ
×
Å

sas
L

1− sas
L

ãn−1

× sH
1− sH

=
c

1− c

Proof of the Claim.

Part i. Increasing the strength of good news; i.e. sH .

Let E and E ′ be two binary experiments with outcome sets S = {sL, sH} and S′ = {s′L, s′H}. The

experiment E ′ carries marginally stronger good news than experiment E :

s′L = sL s′H = sH + δ
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for some small δ such that 1 − sH ≥ δ > 0. I show that Π(σ′1; E ′) > Π(σ1; E); where σ′1 is defined

analogously to σ1 for experiment E ′.

Step 1. Replicating E ′ with a signal pair (s, ŝ).

Rather than observing the outcome of experiment E ′, say a buyer initially observes her original

signal s, and then potentially an additional auxilliary signal ŝ. The first signal she receives, s,

records the outcome of E . If the low outcome sL materialises, the buyer observes no more infor-

mation. If, however, the high outcome sH materialises, she then observes the additional auxiliary

signal ŝ. This auxiliary signal records the outcome of another binary experiment, Ê . The outcome

of Ê is independent both from s and anything else any other buyer observes. Conditional on the

asset’s quality θ, the distribution over its outcomes is given by the pmf pθ(.):

p̂H(ŝH) = 1− ε× sL
1− sL

p̂L(ŝH) = 1− ε× sH
1− sH

The evolution of the buyer’s beliefs when she observes this signal pair is determined by the two

likelihood ratios:

P((s, ŝ) = (sH , ŝH) | θ = H)

P((s, ŝ) = (sH , ŝH) | θ = L)
=

sH
1− sH

×
1− ε× sL

1− sL

1− ε× sH
1− sH

(9.3)

P((s, ŝ) = (sH , ŝL) | θ = H)

P((s, ŝ) = (sH , ŝL) | θ = L)
=

sL
1− sL

(9.4)

Note that the likelihood ratio 9.3 increases continuously with ε.

The information from observing the pair (s, ŝ) as such is equivalent to observing the outcome

of experiment E ′, when:

sH
1− sH

×
1− ε× sL

1− sL

1− ε× sH
1− sH

=
sH + δ

1− (sH + δ)
(9.5)

for our chosen (δ, ε). I choose ε to satisfy this equality for our δ. As such, ε becomes a continuously

increasing function of δ. Furthermore, note that by varying ε between 0 and 1−sH
sH

, we can replicate

any experiment E ′ with s′L = sL and 1 ≥ s′H ≥ sH .

Step 2. π(σ′1; E ′) ≥ π(σ1; E).

The buyer who observes the signal pair (s, ŝ) obtains equivalent information to that from E ′.

We now must identify the strategy σ̃ : {sL, (sH , ŝH), (sH , ŝL)} → [0, 1] for this signal pair that

replicates the outcome of the strategy σ′1 for experiment E ′. This strategy is defined as:

σ̃(sH , ŝH) = 1 σ̃(sL) = σ̃(sH , ŝL) = 0
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and replicates the likelihood ratios of an acceptance and rejection signal under E ′.

Now, fix the seller’s signal profile s = {(si, ŝi)}ni=1 (defined in Section 9.1). I call a seller a

marginal admit if his score profile is such that:

i for at least one i ∈ {1, 2, ..., n}, si = sH , and

ii for every i ∈ {1, 2, ..., n}, either si = sL, or ŝi = ŝL.

These marginal admits drive the wedge between efficiency under E ′ and E : while some buyer trades

under E , they all reject him under Ê . So:

Π(σ′1; E ′)−Π(σ1; E) = P (marginal admit)× [c− P (θ = H | marginal admit)]︸ ︷︷ ︸
(1)

A marginal admit only has signal realisations (s, ŝ) = (sH , ŝL) or s = sL. These carry equivalent

information about θ. Thus, the expression (1) above equals:

c− P
[
θ = H | s1 = ... = sn = sL

]
In the relevant region where there is an equilibrium strategy that leads to rejections after the low

outcome sL, the expression above must be weakly positive:

c− P
[
θ = H | s1 = ... = sn = sL

]
∝ c

1− c
× ρ

1− ρ
×
Å

sL
1− sL

ãn
≤ c

1− c
− ρ

1− ρ
×

n−1∑
k=0

pH(sL)
k

n−1∑
k=0

pL(sL)k
× sL

1− sL

=
c

1− c
− Ψ(σ1; E)

1−Ψ(σ1; E)
× sL

1− sL
≤ 0

where the last inequality follows from the necessary and sufficient condition the proof of Lemma

18 introduced for such an equilibrium to exist.

Part ii. Increasing the strength of bad news; i.e. decreasing sL.

Now, let the experiment E ′ carry marginally stronger bad news than experiment E instead; for

some arbitrarily small δ ∈ [0, sL]:

s′L = sL − δ s′H = sH

Where σ′1 and σ1 are defined as before, I show that:

i Π(σ′1; E)−Π(σ1; E) ≥ 0 when sL ≥ sasL , and

ii Π(σ′1; E)−Π(σ1; E) ≤ 0 when sL ≤ sasL
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Step 1. Replicating E ′ with a signal pair (s, ŝ).

As before, let each buyer observe two signals, potentially: s and ŝ. She first observes s, which

records the outcome of E . If the high outcome sH materialises, she receives no further information.

If, however, the low outcome sL materialises, she then observes the additional auxiliary signal

ŝ, which records the outcome of another binary experiment, Ê . As before, the outcome of this

experiment is independent both from s and anything observed by any other buyer. Its distribution

conditional on the asset’s quality θ is given by the pmf pθ(.):

p̂H (ŝH) = ε× sH
1− sH

p̂L (ŝH) = ε× sL
1− sL

The evolution of the buyer’s beliefs upon seeing the signal pair (s, ŝ) is then determined by the two

likelihood ratios:

P ((s, ŝ) = (sL, ŝH) | θ = H)

P ((s, ŝ) = (sL, ŝH) | θ = H)
=

sH
1− sH

(9.6)

P ((s, ŝ) = (sL, ŝL) | θ = H)

P ((s, ŝ) = (sL, ŝL) | θ = H)
=

sL
1− sL

×
1− ε× sH

1− sH

1− ε× sL
1− sL

(9.7)

Note that 9.7 is continuously and strictly decreasing with ε, taking values between sL
1−sL and 0 as

ε varies between 0 and sH
1−sH . The signal pair (s, ŝ) is informationally equivalent to E ′ when:

sL
1− sL

×
1− ε× sH

1− sH

1− ε× sL
1− sL

=
sL − δ

1− (sL − δ)

I choose ε to satisfy this equality. As before, ε then becomes a continuously increasing function of

δ.

Step 2. Π(σ′1; E ′)−Π(σ1; E)

≥ 0 sL ≥ sas
L

≤ 0 sL ≤ sas
L

The buyer who observes the signal pair (s, ŝ) obtains equivalent information to that from E ′.

We now must identify the strategy σ̃ : {(sL, ŝH), (sL, ŝL), sH} → [0, 1] for this signal pair that

replicates the outcome of the strategy σ′1 for experiment E ′. This strategy is defined as:

σ̃(sL, ŝH) = σ̃(sH) = 1 σ̃(sL, ŝL) = 0

and replicates the likelihood ratios of an approval and rejection signal under E ′.

Now, fix the seller’s score profile: s = {(si, ŝi)}ni=1. I call a seller a marginal reject if:

i for every i ∈ {1, 2, ..., n}, si = sL, and
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ii for at least one i ∈ {1, 2, ..., n}, ŝi = ŝH .

Marginal rejects drive the wedge between efficiency under E ′ and E : while no buyer trades under

E , at least one buyer does under E ′. So:

Π(σ′1; E ′)−Π(σ1; E) = P (marginal reject)× [P (θ = H | marginal reject)− c]︸ ︷︷ ︸
(2)

For a marginal reject, buyers observe either (si, ŝi) = (sL, ŝL), or (si, ŝi) = (sL, ŝH). Denote the

number of buyers who observed the latter as #. Since the seller is a marginal reject, # ≥ 1. Then,

(2) equals:
n∑
i=1

P
(
i ŝH signals | s1 = ... = sn = sL

)
n∑
j=1

P (j ŝH signals | s1 = ... = sn = sL)︸ ︷︷ ︸
(3)

×P (θ = H | # = i)− c

where:

P
(
i ŝH signals | s1 = ... = sn = sL

)
= k×

Ç
n

i

å
×
Å

sH
1− sH

× ε

ãi
×
Å
1− sH

1− sH
× ε

ãn−i
+(1− k)×

Ç
n

i

å
×
Å

sL
1− sL

× ε

ãi
×
Å
1− sL

1− sL
× ε

ãn−i
and k = P

(
θ = H | s1 = ... = sn = sL

)
. Thus, the limit of expression (3) as ε → 0 (and therefore,

δ → 0) for any i > 1 is:

lim
ε→0

1
ε × P

(
i ŝ = ŝH signals | s1 = ... = sn = sL

)
1
ε ×

n∑
j=1

P (j ŝ = ŝH signals | s1 = ... = sn = sL)

= 0 (9.8)

Therefore, we get:

lim
ε→0

n∑
i=1

P
(
i ŝH signals | s1 = ... = sn = sL

)
n∑
j=1

P (j ŝH signals | s1 = ... = sn = sL)

× P (θ = H | # = i)− c

= P (θ = H | # = 1)− c

∝ ρ

1− ρ
×
Å

sL
1− sL

ãn−1

× sH
1− sH

− c

1− c

proving the claim.

Proposition 4. Let buyers’ experiment be binary. Then, equilibrium⋆ total surplus weakly de-
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creases with stronger bad news (lower sL) when:

ρ

1− ρ
×max

®
sL

1− sL
,

ï
sL

1− sL

òn−1

× sH
1− sH

´
≤ c

1− c

This condition is also necessary in the least selective equilibrium.

Proof.

i The least selective equilibrium:

By Lemma 17, the probability that the seller trades upon the low outcome in the least selective

equilibrium is:

σ̌∗(sL) =

1 sL ≥ smute
L

0 sL < smute
L

Thus, efficiency equals (i) the expected surplus from always approving the applicant when sL ≥

smute
L , and (ii) max {0,Π(σ1; E)} when sL < smute

L (established in the proof of Theorem 2):

Π(σ̌∗; E) =

ρ− c sL ≥ smute
L

max {0,Π(σ1; E)} sL < smute
L

Since always trading is always feasible, we have max {0,Π(σ1; E)} ≥ ρ − c when sL < smute
L

by Lemma 14. Furthermore, the final Claim in Theorem 2’s proof establishes that as sL falls, the

expression max {0,Π(σ1; E)} weakly increases (decreases) when sL ≥ sas
L (sL ≤ sas

L ). Thus the

desired conclusion is established.

ii The most selective equilibrium:

By Lemma 18, the most selective equilibrium shifts from one where a buyer always trades to one

where she rejects upon the low signal when sH ≥ s†H(sL), where s†H(.) is an increasing function of

sL. Following the arguments made for the least selective equilibrium then, efficiency:

• weakly increases as sL decreases, when sL ≥ min
¶
sas
L , s

†
L(sH)

©
• weakly decreases as sL decreases, when sL ≤ min

¶
sas
L , s

†
L(sH)

©
.

The desired result follows by noting that s†L(sH) ≥ ssafe
L , and therefore min

¶
s†L, s

as
L (sH)

©
≥

min
{
ssafe
L , sas

L (sH)
}
.

Theorem 3. Let the experiment E ′ differ from E by a local spread at sj ∈ S. Equilibrium⋆ total

surplus is:

1. weakly greater under E ′ if the local spread is a negative override under equilibrium⋆.
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2. weakly less under E ′ if the local spread is a positive override under equilibrium⋆, unless adverse

selection is σ⋆E -irrelevant for signal sj+1.

Proof. The Theorem focuses either on the least, or the most selective equilibrium strategies under

both experiments. In the discussion below, I let σ∗ and σ∗
′ denote whichever equilibria we are

focusing on under the respective experiments E and E ′. When I need to distinguish between the

least and most selective equilibria, I denote them as (σ̌, σ̌′) and (σ̂, σ̂′), respectively. Following

the notation introduced in Definition 2, let S ∪ S′ = {s1, s2, ..., sM} be the joint support of the

experiments E and E ′, with elements increasing in their indices as usual. Since E ′ is obtained by

a local mean preserving spread of E , there is a monotone strategy σ′ : S′ → [0, 1] whose outcome

under E ′ replicates the outcome of σ∗ under E :

σ′(s) =

σ
∗(sj) s ∈ {sj−1, sj+1}

σ∗(s) s /∈ {sj−1, sj+1}

Claim 1. Efficiency under the most (least) selective equilibrium of E ′ weakly exceeds that under

E when σ̂(sj) = 1 (σ̌(sj) = 1).

Now suppose sj leads to trade under σ∗; σ∗(sj) = 1. Therefore, σ′(sj−1) = σ′(sj+1) = 1. Below,

I show that σ∗′ is more selective than σ′. By Lemma 11, it follows that Π
Ä
σ∗

′
; E ′
ä
≥ Π(σ′; E ′) =

Π (σ; E).

If sj−1 = minS ∪ S′ or σ∗′(sj−2) = 0, σ∗′ must necessarily be more selective than σ′; and we

are done. So, for contradiction, I assume the following:

• sj−1 > minS ∪ S′

• σ∗
′
(sj−2) > 0

• σ∗
′ is less selective than σ′, where the two strategies differ.

Case i. σ∗ and σ∗′ are the least selective equilibrium strategies; i.e. σ∗ = σ̌ and σ∗′ = σ̌′.

I will prove the contradiction by constructing a strategy σ̃ : S → [0, 1] for experiment E , such

that:

i σ̃ replicates the outcome σ̌′ induces in E ′,

ii That σ̌′ is an eqm. strategy under E ′ implies that σ̃ is an eqm. strategy under E ,

iii But σ̃ is less selective than σ̌, contradicting that σ̌ is the least selective equilibrium strategy

under E .

I define the strategy σ̃ : S → [0, 1] for E as:

σ̃(s) :=

1 s = si

σ′(s) s ̸= si
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it is seen easily that σ̃ replicates the outcome of σ̌′. Furthermore, σ̌′ is an equilibrium under E ′

if and only if σ̃ is an equilibrium under E : they induce the same interim belief ψ, and share the

following necessary and sufficient condition for optimality:

Pψ (θ = H | sj−2)

= c σ′(sj−2) < 1

≥ c σ′(sj−2) = 1

The strategy σ̃ under experiment E replicates the outcome of σ̌′ under experiment E ′, and σ′ under

E ′ replicates the outcome of σ̌ under experiment E . Since we assumed that σ̌′ is less selective than

σ′, it must be that σ̃ is less selective than σ̌.

Case ii. σ∗ and σ∗′ are the most selective equilibrium strategies; i.e. σ∗ = σ̂ and σ∗′ = σ̂′.

Since strategy σ′ for experiment E ′ replicates the outcome of σ̂ for experiment E , the two

strategies induce the same interim belief ψ. Therefore, if Pψ (θ = H | sj−1) ≥ c, σ′ is an equilibrium

under E ′; meaning σ̂′ must be more selective than σ′.

Otherwise, say Pψ (θ = H | sj−1) < c. Then, by Lemma 13, there must be an equilibrium

strategy that is more selective than σ′ under E ′.

Claim 2. Efficiency under the most (least) selective equilibrium of E ′ falls weakly below that under

E if:

i. sj leads to rejections under E ; i.e. σ̂(sj) = 0 (σ̌(sj) = 0), and

ii. the following condition holds:

ρ

1− ρ
×
Å
rH(σ; E)
rL(σ; E)

ãn−1

× sj+1

1− sj+1
≤ c

1− c

Now, suppose sj leads to rejections under σ∗; σ∗(sj) = 0. Consequently, we have σ′(sj−1) =

σ′(sj+1) = 0. I establish Claim 2 in two steps:

Step 1. σ∗′ is less selective than σ′; trade is likelier when when sj is locally spread.

Step 2. This efficiency when the condition in Claim 2 is met; Π(σ∗′ ; E ′) ≤ Π(σ′; E ′) = Π(σ∗; E).

Step 1.

If sj+1 = maxS ∪ S′ or σ∗′(sj+1) > 0, it must be the case that σ∗′ is less selective than σ′, and we

are done. So instead, I assume that sj+1 < maxS ∪ S′ and σ∗′(sj+1) = 0.

Case i. σ∗ and σ∗′ are the least selective equilibrium strategies; i.e. σ∗ = σ̌ and σ∗′ = σ̌′

Since σ′ replicates the outcome of σ̌, we have Ψ(σ̌; E) = Ψ(σ′; E ′) = ψ. Thus, σ′ must be an

equilibrium strategy under E ′ if Pψ (θ = H | sj+1) ≤ c: the optimality conditions for all signals
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below sj+1 are satisfied a fortiori, and those for the signals above sj+1 are satisfied since σ̌ has

the same optimality conditions under E . So, σ̌′ must be less selective than σ′, since the former

is the least selective equilibrium. If on the other hand, Pψ (θ = H | sj+1) > c, there must be an

equilibrium strategy under experiment E ′ that is less selective than σ′, by Lemma 13.

Case ii. σ∗ and σ∗′ are the most selective equilibrium strategies; i.e. σ∗ = σ̂ and σ∗′ = σ̂′.

σ̂′ is the most selective equilibrium strategy under experiment E ′, and we assumed that σ̂′(sj+1) =

0. The strategy σ̃ defined below for experiment E replicates the outcome σ̂′ generates under exper-

iment E ′:

σ̃(s) =

0 s ≤ sj

σ̂′(s) s > sj

Note that σ̃ must be an equilibrium under experiment E , since the interim belief it induces is the

same as the one σ̂′ does, and its optimality constraints are a subset of the latter’s. But since σ̂ is

the most selective equilibrium strategy under E , σ̃ must be less selective than it.

Step 2.

The statement is trivially true when σ′ = σ∗
′ , so I focus on the case where these two strategies

differ. As Step 1 established, σ∗′ must be less selective than σ′. This implies that σ∗′(sj+1) > 0.

To see why, say we had σ∗′(sj+1) = 0 instead. We can then construct a strategy σ̃ for experiment

E , which replicates the outcome σ∗′ generates under experiment E ′:

σ̃(s) =

0 s ≤ sj

σ∗
′
(s) s > sj

As they induce the same interim belief and the optimality constraints of the latter are a subset of

the former’s, σ̃ must be an equilibrium under E . This contradicts with σ∗ and σ∗
′ being the least

selective strategies; since σ∗′ being less selective than σ′ implies that σ̃ must be less selective than

σ∗. It also contradicts with σ∗ and σ∗
′ being the most selective strategies; since it would imply

that σ′, more selective than σ∗′ , should be an equilibrium under E ′.

Given that σ∗′(sj+1) > 0, I now take another strategy σδE ′ : S′ → [0, 1] for experiment E ′:

σδE ′(s) =


1 s > sj+1

δ s = sj+1

0 s < sj+1

where δ > 0 is small enough so that σδE ′ is more selective than σ∗′ , but less selective than σ′. I will

show that, when the condition stated in Claim 2 holds, we have Π
(
σδE ′ ; E ′) ≤ Π(σ′; E ′) for δ → 0.

Lemma 14 then implies that Π
Ä
σ∗

′
; E ′
ä
≤ Π

(
σδE ′ ; E ′), which coins the result.
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To show this, I construct another experiment Ere under which I will use compare two strategies,

σre and σδre, that replicate the outcomes of the strategies σ′ and σδE ′ , respectively. The experiment Ere

has three possible outcomes, {sreL , sreδ , sreH}. Conditional on the applicant’s quality θ, its outcome

distribution is independent from any other information any evaluator sees, and is given by the

following pmf pre
θ :

pθ(s
re) =


1− rθ(σ

∗; E) s = sreH

δ × p′θ(sj+1) s = sreδ

rθ (σ
∗; E)− δ × p′θ(sj+1) s = sreL

Define the strategies σre and σδre for this experiment as follows:

σre(s) =


1 s = sreH

0 s = sreδ

0 s = sreL

σδre =


1 s = sreH

1 s = sreδ

0 s = sreL

Now note that these two strategies replicate the outcomes of the strategies σ′ and σδE ′ , respec-

tively. Under σre(s), the probability that a buyer trades, conditional on the seller’s quality, is the

same as it is under strategy σ′ (or σ∗, which it replicates), and under σδre, it is the same as it is

under σδE ′ .

So, the difference between efficiency under these two strategies is determined by the marginal

reject who:

• is rejected by every buyer under the strategy σre.

• is accepted by at least one buyer under the strategy σδre.

Where sre =
{
s1, ..., sn

}
is the seller’s signal profile under the experiment Ere, he has:

• no sreH signals; si ̸= sreH for all i ∈ {1, 2, ..., n} and

• at least one sreδ signal; there exists some i ∈ {1, 2, ..., n} such that si = sreH .

Thus we have:

Π(σδE ′ ; E ′)−Π(σ′; E ′) = Π(σδre; Ere)−Π(σre; Ere)

= P (marginal reject)× [P (θ = H | marginal reject)− c]︸ ︷︷ ︸
(2)
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The expression labelled (2) above equals:

n∑
i=1

P (i sreδ and n− i sreL signals)
n∑
k=1

P
(
k sreδ and n− k sreL signals

) × P (θ = H | i sreδ and n− i sreL signals)− c

Since the probability that a buyer observes the sreδ signal is proportional to δ, we have45:

lim
δ→0

P (i sreδ and n− i sreL signals)
n∑
k=1

P
(
k sreδ and n− k sreL signals

) = 0

Therefore, we get:

lim
δ→0

n∑
i=1

P (i sreδ and n− i sreL signals)
n∑
k=1

P
(
k sreδ and n− k sreL signals

) × P (θ = H | i sreδ and n− i sreL signals)− c

lim
δ→0

P (θ = H | one sreδ signal and n− 1 sreL signals)− c

∝ lim
δ→0

ρ

1− ρ
×
p′H(sj+1)

p′L(sj+1)
×
Å
rH(σ

∗; E)− δ × p′H(sj+1)

rL(σ∗; E)− δ × p′L(sj+1)

ãn−1

− c

1− c

=
ρ

1− ρ
× sj+1

1− sj+1

Å
rH(σ

∗; E)
rL(σ∗; E)

ãn−1

− c

1− c

Proposition 6. Let the experiment E ′ differ from E by a local spread at sj . Total surplus in the

most selective equilibrium is lower under E ′ if the following conditions hold:

ρ

1− ρ
×
Å

sj
1− sj

ã
≤ c

1− c
and

ρ

1− ρ
×
Å

sj
1− sj

ãn−1

× sj+1

1− sj+1
≤ c

1− c

Proof. First, I let σ̂(sj+2) < 1. I show that this implies σ̂ and σ̂′ induce equivalent outcomes under

their respective experiments. The strategy σ′ : S′ → [0, 1] which replicates the outcome of σ̂′ under

experiment E ′:

σ′(s) =

σ̂(s) s ≥ sj+2

0 s < sj+2

must then be an equilibrium strategy under experiment E ′. This is because these strategies induce

the same interim belief, that σ̂ is an equilibrium strategy under E ensures that the optimality

conditions of σ′ for signals below sj+2 are satisfied, and for signals above sj+2, the optimality

conditions are the same as those for σ′. This means that σ̂′ must be more selective than σ′.
45See expression 9.8 and the surrounding discussion in the proof of Theorem 2 for a more detailed explanation of

this.
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However, when proving Theorem 3, we established that σ′ must be more selective than σ̂′. So it

must be that σ′ = σ̂′, and we are done.

So instead, let σ̂(sj+2) = 1. But then, it is easily established that:

rH(σ̂; E)
rL(σ̂; E)

≤ sj
1− sj

since rθ(σ̂; E) =
j∑

k=1

pθ(sk). So, the condition Proposition 6 supplies is sufficient for the one Theorem

3 does.

Lemma 7. Where it exists, the regulator-optimal garbling is monotone binary and produces IC

recommendations.

Proof. To prove this statement, I take some garbling EG and an equilibrium σG : SG → [0, 1] it

supports. I then construct a monotone binary garbling EG∗ which produces IC recommendations,

and show that efficiency under EG∗ and the strategy which obeys its recommendations, σG∗, are

higher than those under EG and σG.

For the monotone binary garbling EG∗ = (SG,PG∗) and the garbling EG = (SG,PG) in question:

P×T = PG P×T∗ = PG∗

define the expressions:

f∗(s) := pL(s)× t∗i1 f(s) := pL(s)×
∑

sGj ∈SG
tij ×

Ä
1− σG(sGj )

ä
for each s ∈ S. Given the asset has Low quality, f∗(s) is the probability that (i) a buyer would

have observed the signal s ∈ S in her original experiment, and (ii) the garbling EG∗ issues her

a “rejection recommendation”. Similarly, f(s) is the probability that (i) a buyer would observe

the signal s ∈ S in her original experiment, and (ii) he would be rejected under the equilibrium

strategies σG. For this Low quality seller, rG∗
L below is the probability that the buyer receives a

rejection recommendation under EG∗; and rGL is the probability that the buyer rejects him under

(EG, σG):

rG∗
L :=

∑
s∈S

f∗(s) rGL :=
∑
s∈S

f(s)

Now, take the least selective monotone binary garbling EG∗ such that rG∗
L = rGL . Evidently, this

garbling exists.

Clearly, one can treat f∗ and f as probability density functions over S when normalised. Fur-

thermore, the distribution the former describes is first order stochastically dominated by the one
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the latter does; f∗(sj)∑
s∈S

f∗(s) crosses f(s)∑
s∈S

f(s) once from below. Therefore we get:

r∗H :=
∑
s∈S

pH(s)

pL(s)
× f∗(s)∑

s∈S
f∗(s)

≤
∑
s∈S

pH(s)

pL(s)
× f(s)∑

s∈S
f(s)

=: rH

where r∗H and rH are the probabilities that a High quality seller is rejected from a visit under the

strategies σG∗ and σG, respectively.

Since r∗H ≥ rH and r∗L = rL, efficiency is higher under σ∗ than it is under σ. It only remains to

show that the strategy σ∗ is optimal against the interim belief ψ∗ consistent with it.

The interim belief ψ∗ consistent with EG∗ and σG∗ lies below ψ—the interim belief consistent

with EG and σG:

ψ∗

1− ψ∗ =

n−1∑
k=0

(r∗H)
k

n−1∑
k=0

(
r∗L

)k =

n−1∑
k=0

(rH)
k

n−1∑
k=0

(rL)k
≤ ψ

1− ψ

Under the interim belief ψ∗, it is optimal for a buyer upon the signal sG∗
L if and only if:

ψ∗

1− ψ∗ ×
r∗H
r∗L

≤ c

1− c

But this inequality must hold; since r∗H
r∗L

≤ rH
rL

, ψ∗ ≤ ψ, and σG is optimal against ψ:

ψ∗

1− ψ∗ ×
r∗H
r∗L

≤ ψ

1− ψ
× rH
rL

≤ c

1− c

Furthermore, that Π(σG∗;SG∗) ≥ Π
(
σ;SG

)
≥ 0 suggests that the expected suprlus from ac-

cepting a seller upon the “approve” recommendation must be weakly positive; hence optimal. Thus,

the strategy σG∗ is optimal against ψ∗.

Proposition 8. If the least selective monotone binary garbling under which adverse selection

is irrelevant produces IC recommendations, it is the regulator-optimal garbling. Otherwise, the

regulator-optimal garbling is either:

• the least selective garbling under which adverse selection is irrelevant, or

• the most selective garbling under which adverse selection is not irrelevant

among monotone binary garblings which produce IC recommendations.

Proof. Step 1: The following are well-defined:
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• the least selective monotone binary garbling under which adverse selection is irrelevant,

• the least (most) selective monotone binary garbling under which adverse selection is (not)

irrelevant among those which produce IC recommendations.

I first show the least selective monotone binary garbling under which adverse selection is ir-

relevant is well defined. For any monotone binary garbling EG = (SG,PG), let P × T = PG and

define d(EG) :=
m∑
i=1

ti2. Evidently, d(.) is a bijection between the space of monotone binary gar-

blings of E and [0,m]. Also, where both are monotone binary garblings of E , EG is more selective

than EG′ if and only if d(EG) ≤ d(EG′
). Thus, we seek the monotone binary garbling d−1(D∗)

where D∗ := max
{
D ∈ [0,m] : a.s. is irrelevant under d−1(D)

}
. We must only show that D∗ is

well defined. To that end, define the Real valued function F over the space of monotone binary

garblings, where:

F (SG) =



ρ
1−ρ

pH(s∗)
pL(s∗)

×
(
rGH
rGL

)n−1
− c

1−c d(EG) ∈ (0,m)

lim
D↓0

F ◦ d−1(D) d(EG) = 0

+∞ d(EG) = m

rGθ :=
∑
s∈S

pGs (s
G
L )× pθ(s)

where s∗ is the threshold signal of this garbling.

So, we seek D∗ := max
{
D ∈ [0,m] : F ◦ d−1(D) ≥ 0

}
. But this maximiser exists because the

function F ◦ d−1 is upper semicontinuous: F ◦ d−1 is a decreasing function, and for any D̄ ∈ [0,m]

and ε > 0, we can find some δε such that D ∈ (D̄− δε, D̄)∩ [0,m] implies d−1(D̄) and d−1(D) have

the same threshold signal s∗ and thus F ◦ d−1(D) < F ◦ d−1(D̄) + ε since rGH/rGL is continuous in

d(SG).

Now say this garbling does not provide IC recommendations. Denote the interim belief that is

consistent with evaluators following EG’s recommendations as ψG. The garbling EG provides IC

recommendations if:

rGH
rGL

× ψG

1− ψG︸ ︷︷ ︸
:=f1(d(EG))

≤ c

1− c

1− rGH
1− rGL

× ψG

1− ψG︸ ︷︷ ︸
:=f2(d(EG))

≥ c

1− c

As defined above, both f1(.) and f2(.) are continuous. Therefore, the set of monotone binary gar-

blings with optimal recommendations—
¶
D ∈ [0,m] : f1(D) ≤ c

1−c and f2(D) ≥ c
1−c

©
—is compact.

Thus, both objects below are well-defined:

max
{
D ∈ [0,m] and d−1(D) has IC rec.s : F ◦ d−1(D) ≥ 0

}
min

{
D ∈ [0,m] and d−1(D) has IC rec.s : F ◦ d−1(D) ≤ 0

}
Among those with IC recommendations, the former gives us the least selective garbling under
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which adverse selection is irrelevant. The latter gives us the most selective garbling under which

adverse selection is not irrelevant among such garblings, since the least-selective garbling under

which adverse selection is irrelevant does not have IC recommendations (the minimiser of this set

must have F ◦ d−1(D) < 0).

Step 2: Proving the statement of Proposition 8.

Efficiency under a monotone binary garbling SG and strategies σG that obey its recommenda-

tions is given by:

Π
Ä
σG;SG

ä
= ρ− c− ρ×

Ä
rGH
än

× (1− c) + (1− ρ)×
Ä
rGL
än

× c

As a function of d−1(.), efficiency is continuous and therefore attains its maximum over the set

[0,m]. I show that this maximum is attained with the least selective garbling under which adverse

selection is irrelevant.

For the garbling EG, define EG+ε := d−1(d(EG) + ε) and SG−ε := d−1(d(SG) − ε). Likewise, let

s∗+δ and s∗−δ be the threshold signals of these experiments, and r∗θ;+δ, r
∗
θ;−δ be the probability that

a seller of quality θ is rejected in a visit, under each garbling. From our earlier reasoning about the

impact of making evaluators strategies marginally more (less) selective, we observe that:

lim
δ→0

Π
Ä
σG+δ; EG+δ

ä
−Π
Ä
σG; EG

ä
∝ lim

δ→0

ρ

1− ρ
×
pH(s

∗
+δ)

pL(s∗+δ)
×
Ç
rGH;+δ

rGL;+δ

ån−1

− c

1− c
≤ 0

where the last inequality follows since EG is the least selective garbling under which adverse selection

is irrelevant. We conclude that giving evaluators a marginally less selective garbling, and therefore

(Lemma 14) any garbling that is less selective than SG, cannot improve their payoffs. Likewise, for

a marginally more selective garbling we have:

lim
δ→0

Π
Ä
σG+δ; EG−δ

ä
−Π
Ä
σG; EG

ä
∝ − lim

δ→0

ρ

1− ρ
× pH(s

∗)

pL(s∗)
×
Ç
rGH;+δ

rGL;+δ

ån−1

− c

1− c
≥ 0

where the term on the RHS is now negative because the probability of trade decreases when

strategies become more selective. By a reasoning similar to that behind Lemma 14, this reveals

that no garbling that is more selective can improve efficiency either.

This also proves that among those with optimal recommendations, the least selective garbling

under which adverse selection is irrelevant cannot be improved with a more selective garbling and

the most selective garbling under which adverse selection is not irrelevant cannot be improved with

a less selective garbling.
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